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Abstract

In this article we discuss the implementation of the combined first and second order total varia-
tion inpainting that was introduced by Papafitsoros and Schönlieb. We describe the algorithm
we use (split Bregman) in detail, and we give some examples that indicate the difference between
pure first and pure second order total variation inpainting.

Source Code

We provide a source code for the algorithm written in C and an online demonstration, accessible
on the article web page http://dx.doi.org/10.5201/ipol.2013.40.

Keywords: inpainting, split Bregman, second order total variation

1 Introduction – TV-TV2 Image Inpainting

Image inpainting denotes the task of restoring a missing part of an image using information from
the known part. In the continuous setting, a greyscale image is typically modelled as a function
u : Ω → R where Ω ⊆ R

2 is usually a rectangle and u(x) is the intensity of the grey level at the
point x. The missing part of the image is called the inpainting domain and is denoted by D ⊆ Ω, see
figure 1. In the discrete setting an image is a function u : {1, 2, . . . , n} × {1, 2, . . . ,m} → R, where
n×m is the image resolution (nm pixels). Coloured images are modelled as vector valued functions,
i.e., with values in R

3 instead of R. That is, one real value per colour channel, e.g. for the red, green
and blue channels (RGB).

Image inpainting methods can be roughly separated into four categories, depending on being
variational or non-variational and local or non-local. The variational methods in contrast with
the non-variational are characterised by the fact that the reconstructed image ur is obtained as a
minimiser of a certain energy functional. A method is local if the information that is needed to fill
in the inpainting domain is only taken from points neighboring the boundary of D. Non-local or
global inpainting methods take into account all the information from the known part of the image,
usually weighted by its distance to the point that is to be filled in. The latter class of methods is
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D

D

Figure 1: The inpainting domain D is marked with grey colour. The task is to fill in this domain in
a sensible way using information from the rest of the image.

(a) Original image. (b) Image with text.

(c) Restored image using TV inpainting with α = 0.01.
The inpainting domain was chosen to be all the
white pixels.

(d) Absolute difference between the original and the
restored image - rescaled for better visibility. The
PSNR inside the inpainting domain is (29.47, 29.51,
31.54) for the RGB channels respectively.

Figure 2: Removing text from an image using TV inpainting. Note that the absolute error is larger
in the areas where the original image has texture. This is because TV inpainting promotes piecewise
constant reconstructions inside the inpainting domain.
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very powerful, allowing to fill in structures and textures almost equally well. However, they still have
some disadvantages. One major one is the high computational cost involved in their solution. Local
methods are sometimes more desirable, especially when the inpainting domain is relatively small.
Here we discuss only variational, local methods. For different types of local inpainting methods
we refer the reader for instance to Bertalmı́o et al. [3] and Bornemann and März [5] (inpainting
via transport), Chan and Shen [10] (TV inpainting), Chan and Shen [9] (curvature driven diffusion
inpainting), Esedoglu and Shen [14] (Mumford–Shah based inpainting) and Masnou and Morel [18],
Chan et al. [8], and Tai et al. [26] (Euler’s elastica inpainting). For non-local methods the reader is
referred to Cao et al. [7], Criminisi et al. [12], and Arias et al. [2].

In the variational approach, the central role is held by a term Ψ(u) known as the regularising term
or regulariser. The minimisation of Ψ(u) is responsible for the filling-in process inside the inpainting
domain. Of course, different choices of Ψ result in different qualitative restorations of the missing
part D. In our formulation, a second term DΩ\D(u, u0) is added to Ψ, which is nonnegative and has
the property that it is zero when u(x) = u0(x) for every x ∈ Ω \D. This term is called the fidelity

term. Since we desire the values of u to be close to u0 in Ω \D we would like to keep the value of
the fidelity term as small as possible. Typically, the fidelity term is chosen to be the square of the
L2 norm of u− u0, since this is convex and differentiable. The minimisation problem then reads

min
u

∫

Ω\D

(u− u0)
2 dx+Ψ(u), (1)

i.e., the resulting energy functional is the sum of the fidelity and the regularising term. The fidelity
and regularising terms are balanced against each other by one or more regularisation parameters
introduced in Ψ.

In the continuous setting, the minimisation (1) is done over an appropriate Banach space B
which depends on the choice of the regulariser Ψ. In the case that Ψ(u) = α

∫

Ω
|∇u|2 dx (harmonic

inpainting), we have B = W 1,2(Ω), while in the case that Ψ(u) = αTV(u), the total variation of u
(TV inpainting), we have B = BV(Ω), the space of functions of bounded variation see Ambrosio et
al. [1] and Giusti [15]. Here α is a positive parameter balancing the fidelity and the regularising term.
For regular enough functions the total variation of u is the L1 norm of the gradient, i.e., TV(u) =
∫

Ω
|∇u| dx. The advantage of TV over harmonic inpainting is that it is able to preserve discontinuities

inside the inpainting domain, see Chan and Shen [25, 11]. One of the many explanations for this
effect is that by minimising the L1 norm of the gradient, one obtains solutions that have sparse
gradient, i.e., piecewise constant images inside the inpainting domain.

In our method, the regularising term is chosen to be the sum of the total variation TV(u) plus
the total variation of the gradient, TV2(u) = TV(∇u), weighted with two positive parameters α and
β respectively, i.e.,

Ψ(u) = αTV(u) + βTV2(u). (2)

The appropriate Banach space for the minimisation (1) is the space of functions of bounded Hessian
BH(Ω), see Demengel [13]. Hence, the variational problem is

ur = argmin
u∈BH(Ω)

∫

Ω\D

(u− u0)
2 dx+ αTV(u) + βTV2(u). (3)

Here, for sufficiently regular functions u, TV2(u) is the L1 norm of the Hessian, i.e., TV2 =
∫

Ω
|∇2u| dx. The motivation for introducing this second order term in the regulariser (2) is that,

as it was observed by Papafitsoros and Schönlieb [20], this kind of regularisation has the ability to
connect large gaps in the inpainting domain with the price of some blur. If the inpainting domain is
thin enough, as it is for example in the case of text removal, TV inpainting performs satisfactorily,
see figure 2. However, in the task of interpolating large gaps along the inpainting domain, TV and
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(a) Small gap. Inpainting
domain: grey area.

(b) Large gap 1. Inpaint-
ing domain: grey
area

(c) Large gap 2. Inpaint-
ing domain: grey area

(d) Small gap: result of
harmonic inpainting
with α = 0.01.

(e) Large gap 1: result
of harmonic inpaint-
ing with α = 0.01.

(f) Large gap 2: result
of harmonic inpaint-
ing with α = 0.01.

(g) Small gap: result of
TV inpainting with
α = 0.01.

(h) Large gap 1: result
of TV inpainting with
α = 0.01.

(i) Large gap 2: result
of TV inpainting with
α = 0.01.

(j) Small gap: result of
pure TV2 inpainting
with β = 0.01.

(k) Large gap 1: result of
pure TV2 inpainting
with β = 0.01.

(l) Large gap 2: result
of pure TV2 inpaint-
ing with β = 0.01.

Figure 3: (a)–(c): Three different inpainting domains. (d)–(f): Harmonic inpainting. (g)–(i): TV
inpainting. (j)–(l): TV2 inpainting.
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harmonic inpainting perform poorly in comparison with TV2 inpainting, see figure 3. In the example
in figure 3 the task is to inpaint gaps of different widths in a black stripe. Harmonic inpainting is
achieving no connectedness, producing a rather smooth result. TV inpainting is able to connect and
preserve the edge of the stripe only if the gap is small enough [8], while TV2 inpainting is able to
connect the large gap with the price of some blur. However, this connectedness depends also on the
size and geometry of the inpainting domain, see section 3.2 for some examples and heuristics.

The role of the parameters α and β in the combined TV-TV2 inpainting is twofold. On one hand,
one wants to keep both values of α and β small such that more weight is put on the fidelity term
so it remains close to zero and hence we essentially have ur = u0 in Ω \ D. On the other hand,
the values of α and β are also balancing the two regularising terms TV and TV2. Although, as we
see in section 3.1, connectedness along large gaps is essentially achieved with pure TV2 inpainting
(α = 0), we introduce this combination in order to keep the method flexible, regarded as a superset
of pure TV and pure TV2 inpainting. In this way, we can study the effect that each term has on the
inpainting image.

For the well-posedness of minimisation (1), i.e., existence of minimisers as well as stability results,
we refer the reader to the respective references for the models we mentioned above. In particular, the
well-posedness of the minimisation problem (3) is proven in Papafitsoros and Schönlieb [20]. Even
though, existence and stability results are proven, uniqueness of solutions is most of the time absent
due to the non-strict convexity of the fidelity term and the regulariser. This non-uniqueness is not a
fault of the variational problem but is correctly reflecting the ambiguity of the inpainting problem.

For more information on variational inpainting involving higher order derivatives, see e.g. Chan
et al. [8], Lai et al. [17], Chan and Shen [11], Masnou and Morel [18] (Euler’s elastica), Esedoglu
and Shen [14] (Mumford–Shah–Euler inpainting), Bertozzi et al. [4], Schönlieb and Bertozzi [24] (low
curvature image simplifiers).

2 Implementation using the Split Bregman Method

In this section we describe in detail how we solve numerically the minimisation problem (3). We use
the split Bregman method as it was done in Papafitsoros and Schönlieb [20]. We start by formulating
the discrete version of the problem (3). We define the corresponding L2 and L1 norms of a discrete
vector field U : {1, 2, . . . , n} × {1, 2, . . . ,m} → R

d with U = (U1, U2, . . . , Ud) as follows:

‖U‖2 =

(

n
∑

i=1

m
∑

i=1

d
∑

k=1

Uk(i, j)
2

)1/2

,

‖U‖1 =
n
∑

i=1

m
∑

j=1

(

d
∑

k=1

Uk(i, j)
2

)1/2

.

In the discretised setting the minimisation problem we need to solve is the following:

min
u∈Rn×m

‖XΩ\D(u− u0)‖
2
2 + α‖∇u‖1 + β‖∇2u‖1, (4)

where ∇u = (Dxu,Dyu) and ∇
2u = (Dxxu,Dyyu,Dxyu,Dyxu) are discrete differential operators of

first and second order respectively. In the next section, we define the discrete differential operators
such that Dxy = Dyx.
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2.1 Discrete First and Second Order Derivatives

We define here the discrete first and second derivatives Dx, Dy, Dxx, Dyy and Dxy which are all
operators from R

n×m to R
n×m. We assume periodic boundary conditions for u. By choosing periodic

boundary conditions, the action of each of the discrete differential operators can be regarded as a
circular convolution of u and allows the use of fast Fourier transform, which our algorithm relies on,
see also Wu and Tai [27] for a similar implementation.

In our discrete implementation, the coordinates x and y are oriented along columns and rows
respectively. We define the discrete gradient ∇u = (Dxu,Dyu) as a forward difference operator

Dxu(i, j) =

{

u(i, j + 1)− u(i, j) if 1 ≤ i ≤ n, 1 ≤ j < m,

u(i, 1)− u(i, j) if 1 ≤ i ≤ n, j = m,

Dyu(i, j) =

{

u(i+ 1, j)− u(i, j) if 1 ≤ i < n, 1 ≤ j ≤ m,

u(1, j)− u(i, j) if i = n, 1 ≤ j ≤ m.

We also need the discrete divergence operator div : (Rn×m)
2
→ R

n×m that has the adjointness
property

−divp · u = p · ∇u, ∀u ∈ R
n×m, p ∈

(

R
n×m

)2
.

This property forms the discrete analogue of integration by parts. For a p = (p1, p2) ∈ (Rn×m)
2
we

define

(divp)(i, j) =
←−
Dxp1(i, j) +

←−
Dyp2(i, j),

where
←−
Dx and

←−
Dy are the following backward difference operators:

←−
Dxu(i, j) =

{

u(i, j)− u(i,m) if 1 ≤ i ≤ n, j = 1,

u(i, j)− u(i, j − 1) if 1 ≤ i ≤ n, 1 < j ≤ m,

←−
Dyu(i, j) =

{

u(i, j)− u(n, j) if i = 1, 1 ≤ j ≤ m,

u(i, j)− u(i− 1, j) if 1 < i ≤ n, 1 ≤ j ≤ m.

Analogously we define the second order discrete differential operators Dxxu, Dyyu, Dxyu, Dyxu.
These are just the corresponding compositions of the first order operators,

Dxxu(i, j) =











u(i,m)− 2u(i, j) + u(i, j + 1) if 1 ≤ i ≤ n, j = 1,

u(i, j − 1)− 2u(i, j) + u(i, j + 1) if 1 ≤ i ≤ n, 1 < j < m,

u(i, j − 1)− 2u(i, j) + u(i, 1) if 1 ≤ i ≤ n, j = m,

Dyyu(i, j) =











u(n, j)− 2u(i, j) + u(i+ 1, j) if i = 1, 1 ≤ j ≤ m,

u(i− 1, j)− 2u(i, j) + u(i+ 1, j) if 1 < i < n, 1 ≤ j ≤ m,

u(i− 1, j)− 2u(i, j) + u(1, i) if i = n, 1 ≤ j ≤ m,

Dxyu(i, j) =



















u(i, j)− u(i+ 1, j)− u(i, j + 1) + u(i+ 1, j + 1) if 1 ≤ i < n, 1 ≤ j < m,

u(i, j)− u(1, j)− u(i, j + 1) + u(1, j + 1) if i = n, 1 ≤ j < m,

u(i, j)− u(i+ 1, j)− u(i, 1) + u(i+ 1, 1) if 1 ≤ i < n, j = m,

u(i, j)− u(1, j)− u(i, 1) + u(1, 1) if i = n, j = m.
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One can easily check that Dxy = Dx(Dy) = Dy(Dx) = Dyx. As before, we also need the discrete

second order divergence operator div2 : (Rn×m)
4
→ R

n×m with the adjointness property

div2q · u = q · ∇2u, ∀u ∈ R
n×m, q ∈

(

R
n×m

)4
.

For a q = (q11, q22, q12, q21) ∈ (Rn×m)
4
we define

(div2q)(i, j) =
←−−
Dxxq11(i, j) +

←−−
Dyyq22(i, j) +

←−−
Dxyq12(i, j) +

←−−
Dyxq21(i, j),

where
←−−
Dxx = Dxx,

←−−
Dyy = Dyy,

←−−
Dxy =

←−−
Dyx with

←−−
Dxyu(i, j) =



















u(i, j)− u(i,m)− u(n, i) + u(n,m) if i = 1, j = 1,

u(i, j)− u(i, j − 1)− u(n, j) + u(n, j − 1) if i = 1, 1 < j ≤ m,

u(i, j)− u(i− 1, j)− u(i,m) + u(i− 1,m) if 1 < i ≤ m j = 1,

u(i, j)− u(i, j − 1)− u(i− 1, j) + u(i− 1, j − 1) if 1 < i ≤ n, 1 < j ≤ m.

Figure 4 describes the action of all the above discrete differential operators. Having defined all
necessary discrete quantities, we now discuss the numerical optimisation of (4).

− +

Dx

i, j + 1i, j

− +

i, ji, j − 1

←−
Dx

−2+ +

i, ji, j − 1 i, j + 1

Dxx =
←−−
Dxx

+

−

+

−i, j

i+ 1, j i, j

i− 1, j

Dy
←−
Dy Dyy =

←−−
Dyy

−2

+

+

i, j

i− 1, j

i+ 1, j

+

+

−

− +

+ −

−

i, j i, j + 1 i− 1, j − 1 i− 1, j

i+ 1, j + 1i+ 1, j i, ji, j − 1

Dxy
←−−
Dxy

Figure 4: Illustration of the discrete derivative approximations.

2.2 The Split Bregman Iteration

In the following, we use what is frequently called split Bregman iteration to solve (4). To do so,
we first formulate the unconstrained minimisation problem (4) as a constrained problem and then
apply Bregman iteration to solve it [6, 19, 28]. One of the advantages of this transformation is that
the problem can be simplified further by splitting it into subproblems which are easier to solve. The
corresponding constrained minimisation problem is

min
u∈Rn×m,ũ∈Rn×m,

v∈(Rn×m)2,w∈(Rn×m)4

‖XΩ\D(u− u0)‖
2
2 + α‖v‖1 + β‖w‖1 such that u = ũ, v = ∇ũ, w = ∇2ũ, (5)

where v = (vx, vy), w = (wxx, wyy, wxy, wyx).
1 Note that the problems (4) and (5) are equivalent. The

introduction of the auxiliary variable ũ is crucial since it allows the use of fast Fourier transform,

1Note that this notation denotes coordinates, not derivatives, of v and w.
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leading to a faster implementation, see Remark 1, page 121. The Bregman iteration that corresponds
to (5) is algorithm 1 where bk1 = (bk1,x, b

k
1,y) ∈ (Rn×m)

2
, bk2 = (bk2,xx, b

k
2,yy, b

k
2,xy, b

k
2,yx) ∈ (Rn×m)

4
and

λ0, λ1, λ2 are positive constants.

Algorithm 1: Bregman Iteration – 1st and 2nd Order Total Variation Inpainting

Initialisation: u1 = u0, ũ
1 = u0, v

1 = ∇u0, w
1 = ∇2u0, b

1
0 = 1, b11 = 1, b12 = 1

[uk+1, ũk+1, vk+1, wk+1] = argmin
u,ũ,v,w

‖XΩ\D(u− u0)‖
2
2 + α‖v‖1 + β‖w‖1 (6)

+
λ0

2
‖bk0 + ũ− u‖22 +

λ1

2
‖bk1 +∇ũ− v‖22

+
λ2

2
‖bk2 +∇

2ũ− w‖22,

bk+1
0 = bk0 + ũk+1 − uk+1, (7)

bk+1
1 = bk1 +∇ũ

k+1 − vk+1, (8)

bk+1
2 = bk2 +∇

2ũk+1 − wk+1, (9)

It is difficult to solve the minimisation problem (6) directly, thus in every iteration we split it
into four separate subproblems for u, ũ, v, w, each of which can be solved quickly. This splitting of
Bregman iteration forms the split Bregman method that was introduced in Goldstein and Osher [16]
for total variation minimisation. See also the works by Getreuer [21, 22, 23] which use the split
Bregman method for TV denoising, deblurring and inpainting respectively. In our case the split
Bregman formulation reads as detailed in algorithm 2.

Algorithm 2: Split Bregman Iteration – 1st and 2nd Order Total Variation Inpainting Grey
Scale Images

Initialisation: u1 = u0, ũ
1 = u0, v

1 = ∇u0, w
1 = ∇2u0, b

1
0 = 1, b11 = 1, b12 = 1

Subproblem 1: uk+1 = argmin
u∈Rn×m

‖XΩ\D(u− u0)‖
2
2 +

λ0

2
‖bk0 + ũk − u‖22, (10)

Subproblem 2: ũk+1 = argmin
ũ∈Rn×m

λ0

2
‖bk0 + ũ− uk+1‖22 +

λ1

2
‖bk1 +∇ũ− vk‖22 (11)

+
λ2

2
‖bk2 +∇

2ũ− wk‖22,

Subproblem 3: vk+1 = argmin
v∈(Rn×m)2

α‖v‖1 +
λ1

2
‖bk1 +∇ũ

k+1 − v‖22, (12)

Subproblem 4: wk+1 = argmin
w∈(Rn×m)4

β‖w‖1 +
λ2

2
‖bk2 +∇

2ũk+1 − w‖22, (13)

Update on b0: bk+1
0 = bk0 + ũk+1 − uk+1, (14)

Update on b1: bk+1
1 = bk1 +∇ũ

k+1 − vk+1, (15)

Update on b2: bk+1
2 = bk2 +∇

2ũk+1 − wk+1. (16)

We now describe how we solve each of the four subproblems (10)–(13). The formulae for their
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solutions are enclosed in boxes.

2.2.1 Subproblem 1

This problem has a closed form solution, so it can be solved very fast. We have

uk+1 = argmin
u∈Rn×m

‖XΩ\D(u− u0)‖
2
2 +

λ0

2
‖bk0 + ũk − u‖22

= argmin
u∈Rn×m

∑

i,j

XΩ\D(u(i, j)− u0(i, j))
2 +

λ0

2

(

bk0(i, j) + ũk(i, j)− u(i, j)
)2
⇒

uk+1(i, j) = argmin
z∈R

XΩ\D(z − u0(i, j))
2 +

λ0

2

(

bk0(i, j) + ũk(i, j)− z
)2

.

It is trivial to calculate the solution of the last minimisation problem. We have

uk+1(i, j) =
(

2XΩ\D(i,j)

λ0+2

)

u0(i, j) +
(

λ0+2(1−XΩ\D(i,j))

λ0+2

)

(bk0(i, j) + ũk(i, j)). (17)

2.2.2 Subproblem 2

We have

ũk+1 = argmin
ũ∈Rn×m

λ0

2
‖bk0 + ũ− uk+1‖22 +

λ1

2
‖bk1 +∇ũ− vk‖22,+

λ2

2
‖bk2 +∇

2ũ− wk‖22.

This problem is solved through its optimality condition. In the continuous setting that results in a
fourth order linear PDE. In the discrete setting the optimality condition reads as follows:

λ0ũ
k+1 − λ1

(←−
Dx(Dx(ũ

k+1)) +
←−
Dy(Dy(ũ

k+1))
)

(18)

+λ2

(←−−
Dxx(Dxx(ũ

k+1)) +
←−−
Dyy(Dyy(ũ

k+1)) + 2
←−−
Dxy(Dxy(ũ

k+1))
)

=

λ0(u
k+1 − bk0) + λ1

(←−
Dx(b

k
1,x − vkx) +

←−
Dy(b

k
1,y − vky )

)

−λ2

(←−−
Dxx(b

k
2,xx − wk

xx) +
←−−
Dyy(b

k
2,yy − wk

yy) + 2
←−−
Dxy(b

k
2,xy − wk

xy)
)

.

Taking into account that the discrete differential operators act like circular convolutions, we can
apply 2-dimensional discrete Fourier transforms in (18) (denoted by F(·)) and get

FD · F(ũk+1) = F(Rk), (19)

where

FD := λ0I − λ1

(

F(
←−
Dx(Dx)) + F(

←−
Dy(Dy))

)

+ λ2

(

F(
←−−
Dxx(Dxx)) + F(

←−−
Dyy(Dyy)) + F(

←−−
Dxy(Dxy))

)

,

and Rk is the righthand side of (18) Here “·” means pointwise multiplication of matrices. The term
FD needs to be calculated only once at the beginning of the algorithm. Thus, we have

ũk+1 = F−1
(

F(Rk)/FD
)

, (20)

where “/” denotes pointwise division of matrices.
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Remark 1 Here one can notice the utility of the auxiliary variable ũ. Without this variable, the
minimisation problem (10) would be absent and the problem (11) would have the form

uk+1 = argmin
u∈Rn×m

‖XΩ\D(u− u0)‖
2
2 +

λ1

2
‖bk1 +∇u− vk‖22 +

λ2

2
‖bk2 +∇

2u− wk‖22. (21)

However, we cannot take advantage of the fast Fourier transform in order to solve the optimality
condition of (21) as in general F(XΩ\Du) 6= XΩ\DF(u).

2.2.3 Subproblem 3

Subproblem 3 has a closed form solution as well. We have

vk+1 = argmin
v∈(Rn×m)2

α‖v‖1 +
λ1

2
‖bk1 +∇ũ

k+1 − v‖22

= argmin
v∈(Rn×m)2

∑

i,j

α
√

vx(i, j)2 + vy(i, j)2

+
λ1

2

(

(bk1,x(i, j) +Dxũ
k+1(i, j)− vx(i, j))

2

+(bk1,y(i, j) +Dyũ
k+1(i, j)− vy(i, j))

2
)

⇒

vk+1(i, j) = argmin
(z1,z2)∈R2

∑

i,j

α
√

z21 + z22

+
λ1

2

(

(bk1,x(i, j) +Dxũ
k+1(i, j)− z1)

2 + (bk1,y(i, j) +Dyũ
k+1(i, j)− z2)

2
)

.

Denoting with sk(i, j) = (sk1(i, j), s
k
2(i, j)) =

(

bk1,x(i, j) +Dxũ
k+1(i, j), bk1,y(i, j) +Dyũ

k+1(i, j)
)

∈ R
2

it is easy to check that

vk+1
x (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk1(i,j)

|sk(i,j)|
,

vk+1
y (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk2(i,j)

|sk(i,j)|
,

(22)

with the convention that 0/0 = 0. The above operation on (22) is known as shrinkage.

2.2.4 Subproblem 4

We have

wk+1 = argmin
w∈(Rn×m)4

β‖w‖1 +
λ2

2
‖bk2 +∇

2ũk+1 − w‖22.

Working in the same way as in subproblem 3 and setting

tk(i, j) = (tk1(i, j), t
k
2(i, j), t

k
3(i, j), t

k
3(i, j))

=
(

bk2,xx(i, j) +Dxxũ
k+1(i, j), bk2,yy(i, j) +Dyyũ

k+1(i, j),

bk2,xy(i, j) +Dxyũ
k+1(i, j), bk2,xy(i, j) +Dxyũ

k+1(i, j)
)

∈ R
4,

we obtain

wk+1
xx (i, j) = max

(

|tk(i, j)| − β
λ2
, 0
)

tk1(i,j)

|tk(i,j)|
,

wk+1
yy (i, j) = max

(

|tk(i, j)| − β
λ2
, 0
)

tk2(i,j)

|tk(i,j)|
,

wk+1
xy (i, j) = max

(

|tk(i, j)| − β
λ2
, 0
)

tk3(i,j)

|tk(i,j)|
.

(23)
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Remark 2 Let us note here that all four subproblems (10)–(13) are solved exactly. This is in
contrast with several previous works [16, 21, 22, 23] where the subproblem of the type (11) is solved
approximately with one iteration of Gauss–Seidel to the linear system that results from the optimality
condition. There, the optimality condition leads to a second order linear PDE instead of fourth order.
If one chooses to use Gauss–Seidel for our method then there is no need to use the auxiliary variable
ũ and the corresponding linear problem reads

uk+1 = argmin
u∈Rn×m

‖XΩ\D(u− u0)‖
2
2 +

λ1

2
‖bk1 +∇u− vk‖22 +

λ2

2
‖bk2 +∇

2u− wk‖22. (24)

Even though convergence is achieved using both methods, the FFT approach leads to a faster and a
more robust convergence, see figure 5 for a quantitative comparison.

(a) Original image. (b) Inpainting domain (c) Inpainted image with
α = β = 0.001.
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(d) Plot of the relative error |‖uk−sol‖2|/‖sol‖2 versus the number of iterations. Here sol denotes
a ground solution which is taken to be the solution uk for a large enough k (3000).

Figure 5: We compare the efficiency of the fast Fourier transform for the solution of (18) and one
iteration of Gauss–Seidel for the solution of (24). For the FFT the choice of λ’s is done according to
(44) while for the Gauss–Seidel the selection of λ’s is shown in figure (d). We observe that solving
the linear subproblem with FFT leads to a faster convergence as figure (d) suggests. Using more
that one iterations of Gauss–Seidel do not improve the situation significantly and also increase the
computational time, see also the corresponding discussion in Goldstein and Osher [16].

2.3 The Coloured Image Case

So far we have considered greyscale images only, i.e., u ∈ R
n×m. However it is easy to derive a

version of the algorithm (10)–(16) for coloured images, that is to say when u ∈ (R3)n×m, where for
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simplicity we only consider RGB images. Starting from the continuous setting, if u = (u1, u2, u3) =
(u, u, u) ∈ BV(Ω;R3), then the total variation of u is defined as

TV(u) = sup

{

3
∑

i=1

∫

Ω

uidivφi : φ ∈
[

C1
c (Ω,R

2)
]3
, ‖φ‖∞ ≤ 1

}

. (25)

As in the scalar case, if u ∈ W 1,1(Ω,R3), then

TV(u) =

∫

Ω

|∇u| dx. (26)

Analogously we define TV2(u). In the discrete setting the first and second order total variation have
the form

TV(u) = ‖(∇u,∇u,∇u)‖1, (27)

TV2(u) = ‖(∇2u,∇2u,∇2u)‖1. (28)

The minimisation problem corresponding to (4) is

min
u∈(R3)n×m

‖XΩ\D(u− u0)‖
2
2 + α‖∇u‖1 + β‖∇2u‖1. (29)

It is not hard to check that the only difference to the minimisation algorithm of the greyscale
case is in the subproblems (12) and (13). This is the only point where the colours are mixed.
Subproblems (10), (11) and the updates (14)–(16) are done separately for each channel. This favours
parallelisation of the algorithm 3.

Algorithm 3: Split Bregman Iteration – 1st and 2nd order Total Variation Inpainting Coloured
Images

Initialisation: u1 = u0, ũ
1 = u0, v

1 = ∇u0, w
1 = ∇2u0, b

1
0 = 1, b1

1 = 1, b1
2 = 1

Subproblem 1: Solve (10) separately for uk+1, uk+1, uk+1, (30)

Subproblem 2: Solve (11) separately for ũk+1, ũk+1, ũk+1, (31)

Subproblem 3: vk+1 = argmin
v∈((Rn×m)2)

3

α‖v‖1 +
λ1

2
‖bk

1 +∇ũ
k+1 − v‖22, (32)

Subproblem 4: wk+1 = argmin
w∈((Rn×m)4)

3

β‖w‖1 +
λ2

2
‖bk

2 +∇
2ũk+1 −w‖22, (33)

Update on b0: Do update (14) separately for bk+1
0 , bk+1

0 , bk+1
0 , (34)

Update on b1: Do update (15) separately for bk+1
1 , bk+1

1 , bk+1
1 , (35)

Update on b2: Do update (16) separately for bk+1
2 , bk+1

2 , bk+1
2 . (36)

As far as the solution of (32) is concerned, similarly as before we set

sk(i, j) = (sk1(i, j), s
k
2(i, j), s

k
1(i, j), s

k
2(i, j), s

k
1(i, j), s

k
2(i, j))

=
(

bk1,x(i, j) +Dxũ
k+1(i, j), bk1,y(i, j) +Dyũ

k+1(i, j),

bk1,x(i, j) +Dxũ
k+1(i, j), bk1,y(i, j) +Dyũ

k+1(i, j),

bk1,x(i, j) +Dxũ
k+1(i, j), bk1,y(i, j) +Dyũ

k+1(i, j)
)

,
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and

vk+1
x (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk1(i,j)

|sk(i,j)|
, (37)

vk+1
y (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk2(i,j)

|sk(i,j)|
, (38)

vk+1
x (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk1(i,j)

|sk(i,j)|
, (39)

vk+1
y (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk2(i,j)

|sk(i,j)|
, (40)

vk+1
x (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk1(i,j)

|sk(i,j)|
, (41)

vk+1
y (i, j) = max

(

|sk(i, j)| − α
λ1
, 0
)

sk2(i,j)

|sk(i,j)|
. (42)

Analogously, we compute the solution of (33).

2.4 Stopping Criteria and the Selection of λ’s

We have found empirically that a stopping criterion depending on the relative residue of u is a good
one for the termination of the algorithm. Thus the iterations are terminated when

max

{

|uk − uk−1|

|uk−1|
,
|uk − uk−1|

|uk−1|
,
|uk − uk−1|

|uk−1|

}

≤ 8 · 10−5. (43)

The parameters λ0, λ1 and λ2 have to be chosen carefully. This selection is done automatically
in the online demo, so the user does not have to worry about them. All the combinations lead to
convergence but the number of iterations that are needed for convergence differ dramatically for
different combinations. Empirically we have found that λ1 and λ2 have to be one or two orders of
magnitude larger than α and β respectively. The value of λ0 should not be much larger than α and
β as that will lead to a slow convergence. Here we choose the following values of these parameters,
a combination that has shown to ensure fast convergence:

λ1 = 10α, λ2 = 10β, λ0 = max{α, β}. (44)

Table 1 and figure 6 justify this empirical choice. In figure 6, we perform pure TV2 inpainting to the
image of the example in figure 5 for different choices of λ0 and λ2 and fixed β = 0.001. In each case
we plot the relative error between the iterates and the solution. The solution is taken to be a large
iterate (n = 4000) that is obtained with the choice (44). What we generally observe can be seen in
table 1. The choice (44) leads to a fast convergence with small oscillatory behaviour in the iterates,
see black line in figure 6.

Choice of λ’s Convergence to solution Qualitative behaviour

λ0 = β, λ2 = 10β Fast Small oscillations
λ0 = β, λ2 ≫ 10β Fairly fast Smooth transition
λ0 = β, λ2 ≪ 10β Very slow Wild oscillations
λ0 ≫ β, λ2 = 10β Very slow Smooth transition
λ0 ≪ β, λ2 = 10β Slow Smooth transition

Table 1: Different behaviours of the iterates for different choices of the λ parameters.

The effect of different choices of λ’s is discussed further in Appendix A. As it is also discussed
there, the stopping criterion (43) works well only in combination with the choices (44). Some choices
of λ’s lead to such a slow convergence that even though criterion (43) might be satisfied, the gap in
the inpainting domain is not filled in yet.
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Figure 6: Plot of the relative error of the iterates and the solution (pure TV2 inpainting of the image
in figure 5) for different choices of the parameters λ0 and λ2. The value of β is 0.001 and the solution
is taken to be the 4000th iterate obtained with λ0 = 0.001, λ2 = 0.01 – black line. We observe that
other choices of λ’s generally lead to a slower convergence.

3 Inpainting Examples

3.1 General Examples

In this section we give some inpainting examples. Mainly we want to emphasise the differences in
practice between pure first order (β = 0) and pure second order (α = 0) total variation inpainting.

In figure 7 we see a first example where we try to remove a large font text from a natural image.
The TV2 result seems more pleasant to the human eye (subjective) as TV inpainting produces
piecewise constant parts in the inpainting domain. This is confirmed quantitatively by the PSNR
values inside the inpainting domain, as these are higher for the TV2 inpainting.

In figure 8 we see a second example with coloured stripes. Here we include also a harmonic
inpainting example. As expected, in the case of TV inpainting the image is piecewise constant inside
the inpainting domain, see figure 8(c). This produces a desirable result in stripes whose width is larger
than the size of the gap, connecting the gap and preserving the edges there, while TV2 inpainting,
figure 8(d), adds additional blur at the edge of the stripe that belongs to the inpainting domain. TV
inpainting fails to connect the thin stripes while TV2 inpainting more reliably propagates the right
colour, see figures 8(e) and 8(f). Finally, notice the difference between harmonic and TV2 inpainting
in terms of connectedness, see for example the yellow stripe of figures 8(g) and 8(h).

We also want to examine how the inpainting result behaves while we are moving from pure TV to
pure TV2 inpainting in a continuous way. We can see this in figure 9, where, keeping the geometry of
the inpainting domain fixed, we see how connectedness is achieved while we are making the transition
from pure TV to pure TV2. The parameters α and β vary as follows:

α : 0.01→ 0.008→ 0.006→ 0.005→ 0.004→ 0.002→ 0,

β : 0 → 0.002→ 0.004→ 0.005→ 0.006→ 0.008→ 0.01.

As we see in figure 9, the large gap in the stripe is connected only for large values of β and small
values of α, i.e., for large values of the ratio β/α. In the case where both weights α and β are equal
we observe no connection.
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(a) Original image with
text

(b) Pure TV inpainting,
α = 0.001

(c) Pure TV2 inpainting,
β = 0.001

(d) Detail of original
image

(e) Detail of TV
inpainting

(f) Detail of TV2

inpainting

Figure 7: Removing large font text from an image. Even though this is subjective, we believe that the
pure TV2 result looks more realistic since the piecewise constant TV reconstruction is not desirable
for natural images, for example in inpainting of the letter “T”. The PSNR inside the inpainting
domain for the three channels is (34.19, 34.97, 36.99) for the TV inpainting and (34.74, 35.34, 37.20)
for the TV2 inpainting.

(a) Original image. (b) Harmonic inpainting,
α = 0.001

(c) Pure TV inpainting,
α = 0.001

(d) Pure TV2 inpainting,
β = 0.001

(e) Detail of TV
inpainting

(f) Detail of TV2

inpainting
(g) Detail of harmonic in-

painting
(h) Detail of TV2

inpainting

Figure 8: Coloured stripes inpainting. Observe the difference between TV and TV2 inpainting in the
light blue stripe at the left, figures (e) and (f), where in the TV2 case the blue colour is propagated
inside the inpainting domain.
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(a) Inpainting domain (b) α = 0,
β = 0.01

(c) α = 0.008,
β = 0.002

(d) α = 0.006,
β = 0.004

(e) α = 0.005,
β = 0.005

(f) α = 0.004,
β = 0.006

(g) α = 0.002,
β = 0.008

(h) α = 0,
β = 0.01

Figure 9: Inpainting of a stripe with a large gap. Transition from pure TV to pure TV2. Connected-
ness is achieved only for large ratio β/α, see figures (g) and (h). No connectedness is obtained when
the weights α and β are equal, see figure (e).

3.2 The Influence of the Inpainting Domain on Large Gap Connection

In figures 3(l) and 9(h) we saw that the pure TV2 inpainting has the ability to connect large gaps along
the inpainting domain. However, as numerical experiments have shown, the quality of the connection
depends on the geometry of the inpainting domain D, see figures 10 and 11. In particular, for the
broken stripe example of figures 10 and 11, the domain must extend above, underneath, left and right
of the gap between the two parts of the stripe. For example in figure 10(e), where the inpainting
domain is just the area between the two parts, we do not have connection, see figure 10(j), nor we
have when we extend the domain only in the vertical direction, figures 11(e) and (j). We have not
derived any sufficient conditions on the geometry of D for achieving connectedness and this is a
matter of future research.

(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4 (e) Domain 5

(f) Domain 1, TV2 (g) Domain 2, TV2 (h) Domain 3, TV2 (i) Domain 4, TV2 (j) Domain 5, TV2

Figure 10: Different pure TV2 inpainting results for different inpainting domains of decreasing height.
In all computations we set β = 0.001.

However, let us discuss the following heuristic considerations for the harmonic and biharmonic
inpainting results in figures 3 and 12. Both of these inpainting methods are quadratic and hence
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(a) Domain 1 (b) Domain 6 (c) Domain 7 (d) Domain 8 (e) Domain 9

(f) Domain 1, TV2 (g) Domain 6, TV2 (h) Domain 7, TV2 (i) Domain 8, TV2 (j) Domain 9, TV2

Figure 11: Different pure TV2 inpainting results for different inpainting domains of decreasing width.
In all computations we set β = 0.001.

possess linear Euler–Lagrange equations, which makes the qualitative study of minimisers easier. In
what follows we assume that both u0 and the boundary of the inpainting domain ∂D are sufficiently
smooth. For harmonic inpainting the corresponding Euler–Lagrange equation reads

−α∆u+ 2XΩ\D(u− u0) = 0 in Ω.

Taking the limit α→ 0 leads to the following boundary value problem:

∆u = 0 in D,

u = u0 on ∂D.
(45)

Now we can draw the connection to the heat equation. Let u(x) be the temperature in a point x ∈ R
2.

Interpreting the black stripe in figure 3 to be a heating rod that heats up the grey container defined
by the inpainting domain D, the inpainting results for small α can be explained as the equilibrium
heat distribution inside the grey container, i.e., the u that solves (45). While in figure 3(b) the
heating rods are only touching the container at the outside of its walls—resulting into a rather
modest and almost one-dimensional diffusion of heat in the container—in figure 3(c) the hot rods are
stuck into the grey container that should be heated up, resulting into a blob-like diffusion of heat in
both horizontal and vertical direction. In this case, the inpainting results are almost the same and
no connectedness can be achieved in either case.

Turning our attention to biharmonic inpainting

min
u

∫

Ω\D

(u− u0)
2 dx+

∫

Ω

(∆u)2 dx, (46)

the situation is different. In this case, the corresponding Euler–Lagrange equation reads

α∆2u+ 2XΩ\D(u− u0) = 0 in Ω.

Applying the same argumentation as for harmonic inpainting above we get the following limiting
behaviour

∆2u = 0 in D,

u = u0 on ∂D,

+ appropriate 2nd boundary condition on ∂D.

(47)
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The biharmonic equation (47) models the bending of an elastic flat plate enforced by fixing it to
given values on the boundary ∂D. Here, u(x) denotes the displacement of the plate from its initial
flat state. Taking the plate model (47) as a good approximation of the biharmonic inpainting model
for small α, we can now attempt to interpret the inpainting results in figure 12(e) and (f). In the
first setup in figure 12(b) the plate is fixed to 0, i.e., the grey value black, on two parts of the vertical
boundaries only, and fixed to 255 (white) on the rest of the boundary. The resulting “plate” has
a saddle point shape, failing to connect the two ends of the black stripe. On the other hand, in
figure 12(c) the plate is fixed to 0 on parts of the vertical and horizontal boundary, where the latter
presses the saddle point down to a minimum point at 0 such that the ends of the stripe are (although
not through a perfect line) connected this time. Indeed, in contrast to harmonic inpainting, the
biharmonic inpainting result seems to depend heavily on the geometry of the inpainting domain D.

Going back to the numerical examples for TV2 inpainting in figures 10 and 11 a similar behaviour
to the one of biharmonic inpainting can be observed. As before, we see that in order to achieve
perfect connectedness it seems crucial that the inpainting domain is larger than the gap between
the two stripes. In contrast to biharmonic inpainting though, the nonlinearity within the fourth-
order diffusion of the corresponding Euler–Lagrange equation introduces less blur and results into a
straighter connection of the line.

(a) Small gap. In-
painting domain:
grey area.

(b) Large gap. In-
painting domain 1:
grey area

(c) Large gap. In-
painting domain 2:
grey area

(d) Result of bihar-
monic inpainting
with α = 0.05.

(e) Result of bihar-
monic inpainting
with α = 0.05.

(f) Result of bihar-
monic inpainting
with α = 0.05.

Figure 12: Examples of biharmonic inpainting. The inpainting domain influences the connection of
the stripe in a similar way to pure TV2 inpainting (figure 11).
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A Effect of Different Combinations of λ’s on the Speed and

the Behaviour of Split Bregman Iteration

As we saw in section 2.4, we follow the rules (44) for the selection of λ0, λ1 and λ2. It was mentioned
that this choice was empirical. Different combinations of λ’s not only result in different speeds of the
algorithm but the qualitative behaviour of the solutions is affected as well. For simplicity we study
here the case of pure TV2 inpainting for a fixed parameter β = 0.001, applied on the images that are
shown on figure 13. For each example we provide two intermediate iterates and the final solution.

(a) Original image (b) Destroyed image

Figure 13: Original and damaged image that are used for the comparison of convergence speed and
behaviour of split Bregman iterates for different combinations of λ0 and λ2. For simplicity we perform
pure TV2 inpainting with fixed β = 0.001.

In the first example, figure 14, we use the combination of λ’s specified by the rules (44). Con-
vergence is achieved rather quickly, in 482 iterations. We also provide plots of the evolutions of the
norms ‖u− ũ‖2, ‖wxx −Dxxũ‖2, ‖wyy −Dyyũ‖2 and ‖wxy −Dxyũ‖2. In order for the split Bregman
algorithm to converge, the constraints in (5) should be satisfied, thus these norms should decrease to
zero and this is the case for this example. With this combination of λ’s the iterates exhibit a small
oscillatory behaviour.

In the second example, figure 15, we keep the value of λ0 fixed and equal to β according to (44)
and we increase the value of λ2 by an order of magnitude. As in the previous case, the constraints
in (5) are achieved quickly and the convergence is achieved in 300 iterations. Even though this is
faster than in the previous example, increasing the value of λ2 tends to slow down the convergence
and the iterates are smoother.

In the third example, figure 16, we keep again the value of λ0 fixed but this time we decrease the
value of λ2 two orders of magnitude, down to 10−5. This causes a high oscillatory behaviour among
the iterates and convergence is not achieved before 13790 iterations. The stopping criterion (43) is
satisfied in iteration 11150 but the inpainting domain is not filled in yet. Thus, it is important to
use stopping criterion (43) in combination with the choice (44). The reason for the slow convergence
is that the constraint w = D2u is not satisfied quickly, see figures 16(e), (f), (g).

In the fourth example, figure 17, setting λ2 = 10β according to 44, we increase the value of λ0 by
two orders of magnitude up to 10−1. The main observation here is that even though no oscillations
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(a) 10 iterations (b) 100 iterations (c) 482 iterations
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0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

No of iterations k

‖
w

k x
y
−

D
x
y
ũ
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Figure 14: β = 0.001, λ0 = 0.001, λ2 = 0.01 – choice (44). The convergence is achieved rather
quickly in 482 iterations (first time that (43) is achieved). There is a small oscillatory behaviour
among the iterates. Also, the constraints in (5) are satisfied since the corresponding norms converge
to zero, as figures (d), (e), (f) and (e) indicate.

(a) 10 iterations (b) 100 iterations (c) 300 iterations
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ũ
k
‖

(g) ‖wxy −Dxyũ‖2

Figure 15: β = 0.001, λ0 = 0.001, λ2 = 0.1. The convergence is achieved very quickly in 300
iterations (first time that (43) is achieved). The convergence is smooth, i.e., no oscillatory behaviour
is observed among the iterates. The constraints in (5) are also achieved quickly in this case.
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(a) 100 iterations (b) 1000 iterations (c) 13790 iterations
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Figure 16: β = 0.001, λ0 = 0.001, λ2 = 0.00001. The convergence is very slow, 13790 iterations. In
fact (43) is satisfied in iteration 11150 but the inpainting domain is not filled in yet. Wild oscillations
are observed throughout the iteration. This is observed generally when λ2 ≪ β. Notice that the
constraint w = D2u is not satisfied quickly, as figures (e), (f) and (g) suggest.

(a) 100 iterations (b) 1000 iterations (c) 6680 iterations
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Figure 17: β = 0.001, λ0 = 0.1, λ2 = 0.01. We have slow convergence, in 6680 iterations. The crite-
rion (43) is satisfied in iteration 1150 but the inpainting domain is not filled in yet. The convergence
is smooth, no oscillations are observed.
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(a) 100 iterations (b) 500 iterations (c) 4230 iterations

(d) 100 iterations, details (e) 500 iterations, details (f) 4230 iterations, details
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Figure 18: β = 0.001, λ0 = 0.00001, λ2 = 0.01. In this case the inpainting domain is filled rather
quickly and without any oscillations. However the continuation of the image in the boundary of the
inpainting domain is not smooth in the first iterations but only after 4230 iterations, as figures (d),
(e) and (f) reveal. The reason for that, is the fact that the constraint u = ũ is taking a lot of
iterations to be satisfied, see figure (g).
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are observed, convergence is again dramatically slow, achieved in 6680 iterations. The constraints
in (5) are satisfied but not to the same degree as in the examples of figures 14 and 15.

Finally in the last example, figure 18, keeping λ2 fixed, we decrease the value of λ0 down to
10−5. In this example the inpainting domain is filled in quickly and to the human eye it might seem
that the method has converged very quickly, see for example figure 18(a) where the 100th iterate
is shown. However, actual convergence is achieved in 4230 iterations. By looking at the zoom in
details in figures 18(d), (e) and (f), the reader can convince himself that indeed the result after 100
iterations is not accurate. This can be explained by looking at figure 18(g) and observing that the
constraint u = ũ is not satisfied yet.

In conclusion, through the previous examples, it is justified that the choice of λ’s (44) leads to a
fairly fast convergence. However further investigation is needed in order to examine the exact role
that these parameters have in the convergence speed of the split Bregman iteration.
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