
Estimates for Dynamics of Coupled Flagella

Bati Sengul∗†

January 18, 2011

Abstract

It is theorised that the dynamics of coupled flagella behave much like a system of
weakly coupled noisy oscillators. This enables the biologists to regard the phase difference
of the flagella as an SDE and in this case the unknown parameters of this SDE give
important biological insight, see for example [PTD+09]. However the techniques used
by Polin et. al. do not work in the case when the number of unknowns is large.

Various methods in the literature can be combined to give a powerful and robust
method of statistical analysis for SDEs of a specific type. Using this, the paper aims to
outline methods of statistical analysis that could be used in analysing the dynamics of
coupled flagella.
Keywords: Coupled Flagella, SDE Parameter Fitting, Kramers Exit Problem, Non-
linear Autoregressive Model

1 Introduction

Phase dynamics of eukaryotic flagella is responsible for a variety of phenomena in biology
ranging from the embryonic left-right asymmetry to the enhancement of nutrient uptake.

Mathematically, in order to obtain the dynamics of the flagella, it is of interest to first
make observations on a pair of flagella that are coupled. In [PTD+09] Polin et. al. make
observations on flagella dynamics in Chlamydomonas reinhardtii, a species of unicellular green
algae. The two flagella are thought to be weakly coupled, through a combination of their
roots and the fluid in which they beat. The dynamics of these biological objects are similar
to a systems of weakly coupled phase oscillators which are well understood, see for example
[PRKH02]. If φ1 and φ2 are the phases of the oscillators, then

d

dt
φ1 = ω1 + U(φ1, φ2)

d

dt
φ2 = ω2 + U(φ2, φ1)
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where ω1, ω2 are constants describing the initial frequencies and U is a 2π-periodic function
in both variables which describes the effects of one particle on the other. We consider the
system of phase differences φ1 − φ2 and perturb the system by Gaussian noise, i.e.

Ẋt = Q(Xt) + ξt

where Q ∈ C∞ and has a Fourier expansion and {ξt}t≥0 is centred Gaussian white noise.
Alternatively we can write this as a stochastic differential equation (SDE):

dXt = Q(Xt)dt+ σdBt (1)

where B is a standard Brownian motion on R and σ > 0 is the diffusivity constant. One can
look at this as modelling the over-damped motion in the potential field −

∫ x
0 Q while being

subject to Brownian noise.
The subject of interest is the Fourier exponents of the function Q and σ which are un-

known, thus requiring a method of fitting to data collected during experimentation. The
layout of the paper is as follows; in Section 2 the statistical inference is described, Section 3
describes the steady states of the motion which is relevant both physically and statistically,
the work of Polin et. al. and other physical aspects are discussed in Section 4 and Section 5
gives some results on simulated paths.

Figure 1: The visualisation of X as it rolls along a potential well, while getting
bombarded with small perturbations.

Acknowledgements

I am in large debt to Marco Polin for his support and guidance during this project and his
continued enthusiasm in my work. I would also like to thank Kostas Papafitsoros and Kolyan
Ray for their help with my various questions.

2



2 Time Series Analysis

Suppose we are given a time series {xtn}Nn=0 of a continuous processes X = (Xt : t ≥ 0),
observed at regular intervals δ (without loss of generality we assume that t0 = 0). We would
like to use a maximum likelihood estimation on the parameters of Q, for which the likelihood
function takes the form

P(Xt0 = xt0 , . . . , XtN = xtN ). (2)

Unfortunately, in order to compute (2) analytically, one must compute the laws of the inte-
grals

∫ t
0 Q(Xt)dt in terms of the parameters of Q.This in general cannot be done which gives

us a reverse problem, that is to estimate an SDE using discrete time steps given that we
know it’s drift and diffusivity. This problem will be analysed in 2.1 and afterwards we will
shed some light on the estimation processes for the discrete estimate in 2.2.

2.1 Discrete Estimations to SDEs

This author is familiar with two estimation methods for SDE which are described below in
their full generality. This general disposition is not necessary but certainly very interesting
and illuminating.

2.1.1 The Euler Scheme

Consider a general SDE of the form

dXt = c(Xt)dt+ σ(Xt)dBt

with X0 = x, where σ and c are Lipschitz and are assumed to be known. The Euler scheme
estimates the SDE on equidistant time intervals tn := nδ by

X̃tn − X̃tn−1 = c(X̃tn−1)δ + σ(X̃tn−1)(Btn −Btn−1) (3)

and the process is interpolated between the discrete points.
The rate of convergence of this is well known (c.f. [All07]).

Theorem 2.1.1. The process X̃ converges weakly to X and moreover there exists a constant
C depending on tT such that for each n ≤ T

E[|X̃tn −Xtn |2] ≤ Cδ.

2.1.2 Milstein’s Higher Order Method

Th SDE can be approximated better by looking at higher derivatives. In the case of the
Euler method, we ignored the higher derivative terms in the Taylor series. Milstein’s method
works by applying Itô’s formula to the lower order terms and obtains an approximation
X̃ = (X̃t : t ≥ 0) as
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X̃tn − X̃tn−1 = c(X̃tn−1)δ + σ(X̃tn−1)(Btn −Btn−1)

+
1

2
σ(X̃tn−1)σ′(X̃tn−1)((Btn −Btn−1)2 − δ).

This approximation converges much faster than the Euler scheme, at order δ (c.f. [KP77]),
i.e.

E[|X̃tn −Xtn |2] ≤ Cδ2.

2.2 Parameter Estimation

Now let us look at the problem outlined in the introduction i.e. the system described by

dXt = Q(Xt)dt+ σdBt

with Q(x) =
∑

k≥0 ak sin(kx) + bk cos(kx) where ak, bk and σ > 0 are parameters to be
estimated. We assume that the function Q is given by a finite sum, hence making it Lipschitz
and also treat σ as a nuisance parameter, that is, a parameter which is unknown and assumed
to be fixed. Notice that the two methods described above give the same model as σ is constant.

The problem now reduces to estimate the following non-linear AR model1

xn = f(xn−1|θ) + εn (4)

where f(x) = x+Q(x)δ, εn are i.i.d. N(0, σ2δ) and θ is the vector of parameters ak, bk. Two
methods could be employed here to estimate θ, one is to use a least squares estimate and
the second is to use a maximum likelihood estimation. As the error terms are Gaussian, the
log-likelihood function is

logL(θ) = (2πδ)−T/2 −
∑

n≤T (xn − f(xn−1|θ))2

2δσ2

which is maximised when the square residuals are minimised, thus estimates using least
squares and likelihood coincide to give the same result. Also note that the value of σ does
not effect the minima of the log-likelihood function, giving justification to the assumption
that the parameter σ is a nuisance parameter.

For the estimates on σ we can again use maximum likelihood. Once an estimate θ̂ for
θ is obtained, we can assume that x̄n+1 − f(x̄n|θ̂), where x̄ are observations on x, are i.i.d.
N(0, σ2δ) samples. Then the unbiased likelihood estimate is given by

σ̂2 =
1

δ(T − 1)

∑
n≤T

(x̄n+1 − f(x̄n|θ̂))2.

1We adopt the convention tn = n here to avoid heavy notation.
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2.2.1 Likelihood Ratio Test

Suppose we have fitted two parameters sets θK and θM with lengths K ≤ M . Then we can
use a ratio test to determine which model we should pick. Fix a significance level p, we set
a hypothesis test of the form H0 : θ = θK and H1 : θ = θM , with the same known diffusivity
σ, then the likelihood ratio is given by

Γ(x) :=
L(θM )

L(θK)
= exp

 1

2σ2δ

∑
n≤N

[(xn+1 − f(xn|θK))2 − (xn+1 − f(xn|θM ))2]

 .

Let x̄ denote the observed quantities, then we reject H0 when Γ(x̄) ≥ c, where c is a
critical value determined by P(Γ(x) ≥ c|H0) = p, which we assume is greater than one.2

This simple idea is often difficult to work with due to the complicated nature of the
probabilities under the non-linear system, that is to say that the distribution of Γ(x) is almost
impossible to derive analytically. The solution is then given by the asymptotic properties
of the likelihood ratio. It is well known (c.f. [GH80]) that asymptotically Γ(x) conditioned
on H0 is distributed χ2

d, a χ
2 random variable with d = M −N degrees of freedom. So the

constant c may be calculated as P(χ2
d ≥ c) = p.

Notice now that c 7→ P(χ2
d ≥ c) is decreasing, hence as we reject the null hypothesis when

Γ(x̄) ≥ c, we can reject the null hypothesis if

P(χ2
d ≥ Γ(x̄)) ≤ p. (5)

2.3 Comments

Notice that as in the likelihood estimate we use xn − f(xn−1|θ), we are only looking at the
one step estimate. In essence our discrete processes is given by

X̃n = Xn−1 +Q(Xn−1)δ + (Bn −Bn−1)

thus making the constant in the convergence absolute (that is it does not depend on the time
interval on which we work in).

This approach to the problem of parameter estimation can be very ineffective if the data
set is small, i.e. N is small. The likelihood estimations are well known to deliver closest
approximations asymptotically,3 however they may encounter some problems with a small
sample. So in cases of small samples one may wish to adopt an other statistical tools such
as the Wald statistic or the Lagrange multiplier.

There are however considerable advantages to using likelihood statistics. It is efficient,
and under certain circumstances it is also strongly consistent, that is the likelihood estimate
converges a.s. to the true value of the parameters, see for example [Fry80].

2Notice that this requirement then forces the hypothesis test to be the most powerful test in the sense of
the Neyman-Pearson lemma.

3In other words the estimator is efficient, i.e. has the lowest mean square error asymptotically.
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3 Stable Steady States

3.1 Kramers Exit Problem

Stable steady states (here after referred to as steady states) is the point in which the motion
of the particle becomes confined around a point due to the strong influence of the drift. If we
think of Xt as a ball rolling in a field while being perturbed by Gaussian noise (see Figure
1), we notice that at some "wells", the noise may take a long while to get the ball to escape.
Figure 2 illustrates this problem. On a small scale, the process looks like noise, while actually
the process is jumping between the steady states.
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Figure 2: The first path shows the process close up, where one may think that this
is just the noise. The second picture is zoomed out, showing the steady states where
the process hangs around a point due to the strong drift.

Certainly from a mathematical point of view, the escape time are finite however practically
if our observations were taken only during a steady state, the true values of the parameters
may not be extracted. The important factor in this is the expected time of escape.

Denote by V the potential field on which our ball is rolling, that is

V (x) := −
∫ x

0
Q(u)du

Let A := {x ∈ R : V ′(x) = 0, V ′′(x) < 0} be the set of local maxima, B := {x ∈ R : V ′(x) =
0, V ′′(x) > 0} be the set of local minima and T := inf{t ≥ 0 : Xt ∈ A} the first escape time.
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The problem is then if X0 = x0 for some x0 ∈ B, how does T behave? In particular we would
be interested in Ex0 [T ].

This problem was first considered by Kramers in [Kra40] where he considers the motion
of a particle in a potential well, perturbed by Brownian noise. We follow the more recent
account given by [MS82]. Let Tz := inf{t ≥ 0 : Xt = z}, u := inf{y ∈ A : y > x0} and
v := sup{y ∈ A : y < x0} denote the escape points to the right and left of the starting
location respectively. Then g(x) := Ex[Tu] solves Dynkin’s problem:

Lg = −1

for x < u, where L := 1
2σ

2∆ +Q(x)∇ is the generator of the SDE.
Now the boundary conditions are given by g(u) = 0 and g(−∞) =∞, hence the solution

is given by
Ex[Tu] = Ce(V (u)−V (x)) 2

σ2 . (6)

3.2 Exiting to the Side

Now let us examine the probability of exit on the left or right of the potential well. Define

s(x) :=

∫ x

0
e−2V (l)/σ2

dl

then by an application of Itô’s formula Mt := s(Xt) is a continuous local martingale. We
may apply optional stopping to MT

t as this is a bounded martingale, which gives

E[MT ] = M0 = MTuP(Tu < Tv) +MTvP(Tv ≤ Tu).

The case when s(v) = s(u), i.e. the well is symmetric, then the probabilities are both a half,
otherwise we have that

P+ := P(Tu < Tv) =
s(v)− s(x0)
s(v)− s(u)

which is the probability of escaping to the right of the well. Similarly we have

P− := P(Tu < Tv) =
s(x0)− s(u)

s(v)− s(u)

as the escape probability to the left of the well.

3.3 Application to Data Fitting

While the methods of Section 2.2 work in theory, in practice there may be problems such as
an estimate of θ that is obviously wrong, but happens to minimise the residuals better than
the true value of θ. These are not too uncommon while doing simulations where one knows
what the true values of parameters, and can be prevented by constricting parameters to a
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certain range. However in practice, we do not know the true values so an indication of the
rough range of the parameter values are immensely helpful.

The idea is that looking at a set of data we can see and calculate the average time between
the "slips", i.e. when the rolling ball exits the well. From (6) we see that log of this is roughly
the height of the wells that appear in V , and the maximal height of the well in V is greater
than maxk≤N{akk ,

bk
k }. Hence we can deduce that we would expect to see the maximal value

of θ to be near Nσ2 log τslip where τslip is the expected time of slipping.

4 Physical Interpretations

Figure 3: The measurements taken during experiments by Polin et. al. The red
and blue boxes are used to find the first entrance time of each flagellum.

Following the mathematical exposition we can see that using SDE model

dXt = Q(Xt)dt+ dBt

if indeed the physical phenomena follows this SDE then we would expect to see stationary
noise followed after an exponential time by slips. This is indeed what one can observe from
the data collected by Polin et. al.

The physical phenomena of Chlamydomonas reinhardtii flagella phase synchronization
was measured by looking at the first entrance time of each flagellum into a given box (see
Figure 3). Then it is hypothesised in the paper that the difference in the phases ∆ := φ1−φ2,
where φ1 and φ2 are the measurements taken on each flagellum, is given by the simple model

d∆t = (a+ b sin(∆t))dt+ σdBt
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where a, b, σ are constants. They use the fact that the autocorrelation decay of ∆ is esti-
mated by Ce

−t
τ , with C, τ as constants, to estimate the parameters. Specifically, the three

parameters (C, τ, P+, P−) result in estimations of the form σ2 = πC
τ , a = πσ2 log(P+/P−)

and b = 2π(a2 + (2πτ)−2)−1/2.
The exposition shown here approaches the problem in other direction, once we have

estimated parameters of the model, one can then compute the quartet (C, τ, P+, P−). While
the two methods of parameter estimation coincide for this case (and indeed any case with
less than four parameters), the method used by Polin et. al. fails to work for cases when the
number of unknown parameters are four or more.

5 Simulations

5.1 Methodology

In the results that follow we have taken a small time interval (in the range of 10−6) to
approximate the SDE as closely as possible. From this we have drawn the data at the sample
rate given. The parameters for the simulations were taken from a uniform random variable
on [−5, 5], the variance was taken to be the identity and we have omitted the constant drift
factor. The code used in the simulations is given in the appendix.

The fitting was done using the nls function built in R. Some simulations were done under
less than ideal situations to highlight the possible weaknesses in the fitting method.

5.2 Results
Points Sampling Interval Parameters Error (avg., per cent)
1000 0.1 1 8 · 10−6

1000 0.1 2 4.616517
1000 0.1 4 14.12664
1000 0.001 3 5.793519
10000 0.001 3 0.79469
10000 0.1 2 0.03375826
10 1 2 514.1449
1000 1 3 86.78013

5.3 Conclusion

As we can see from the simulation results, the theoretical aspects of the effects become
apparent. As the discrete approximation relies on the Lipschitz constant of Q, the number
of parameters (as well as their values) directly affect the approximation. This can be seen in
the bottom of the table where the sampling intervals were high.

Other aspects such as the the sampling interval or the number of points, which is needed
for the likelihood estimation to give close results, is also seen in the table.
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6 Epilogue

From the analysis on the fitting methods there are three main factors influencing the errors
in the data fitting, which can be minimised as follows:

• the observations should be taken frequently

• the quantity of observations should be high.

The author hopes that the methods described here could be used in analysis of coupled
flagella even when the coupling function Q is not simple. The fit could then be checked by
computing P+ and P− and comparing this to the estimates obtained from the data.

There is also an extension of this theory to when the diffusivity is not constant, i.e. to
consider an SDE of the form

dXt = Q(Xt)dt+W (Xt)dBt

with some regularity conditions on W . One can use either method of discrete estimation for
this and arrive on a likelihood estimate to fit the parameters ofW . This is however a lot more
computationally expensive, as well as the possibility of impossibility to solve numerically. The
likelihood ratio in this case does not work, leaving the hypothesis testing to much more adhoc
methods.

Appendix

A Simulation Code

The R code used for the simulations is given below.

# F i s the func t i on f ( x ) d e s c r i b ed in s e c t i on 2
# x i s the input vec tor , A i s a vec t o r where the f i r s t h a l f i s a_k and the

second h a l f i s b_k and de l i s the sampling i n t e r v a l
F = function (x ,A, de l ) {

a = A[ 1 : ( length (A)/2) ]
b = A[ ( length (A)/2+1) : length (A) ]
r e t = numeric ( length ( x ) )
for ( i in ( 1 : length ( x ) ) ) {

for ( j in ( 1 : length ( a ) ) ) {
r e t [ i ] = r e t [ i ]+a [ j ] ∗sin ( j∗x [ i ] )+b [ j ] ∗cos ( j∗x [

i ] )
}
r e t [ i ] = r e t [ i ] ∗de l+x [ i ]

}
return ( r e t )

}
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# Simula tes an SDE of the form dX_t = Q(X_t ) d t + \sigma dB_t
# N i s the number o f po ints , d e l i s the sampling i n t e r v a l , A i s a vec t o r where

the f i r s t h a l f i s a_k and second h a l f b_k and s i g i s the d i f f u s i t i v i t y o f
the Brownian motion

Sim = function (N, del ,A, s i g ) {
x = numeric (N)
B = rnorm(N−1 ,0 , de l∗ s i g ^2)
x [ 1 ] = 0
for ( i in 1 : (N−1) ) {

x [ i +1] = F(x [ i ] ,A, de l )+B[ i ]
}
return ( x )

}
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