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Abstract

Here we propose a different perspective of the deep factorisation in [20] based on determining
potentials. Indeed, we factorise the inverse of the MAP-exponent associated to a stable process
via the Lamperti-Kiu transform. Here our factorisation is completely independent from the
derivation in [20], moreover there is no clear way to invert the factors in [20] to derive our results.
Our method gives direct access to the potential densities of the ascending and descending ladder
MAP of the Lamperti-stable MAP in closed form.

In the spirit of the interplay between the classical Wiener—Hopf factorisation and fluctuation
theory of the underlying Lévy process, our analysis will produce a collection of of new results
for stable processes. We give an identity for the point of closest reach to the origin for a stable
process with index o € (0,1) as well as and identity for the point of furthest reach before
absorption at the origin for a stable process with index « € (1,2). Moreover, we show how the
deep factorisation allows us to compute explicitly the stationary distribution of stable processes
multiplicatively reflected in such a way that it remains in the strip [—1, 1].

1 Introduction and main results

Let (X,P,) be a one-dimensional Lévy process started at x € R. Suppose that, when it exists, we
write 1 for its Laplace exponent, that is to say, ¥(z) := t~ ! log Eg[e*X] for all z € C such that the
right-hand side exists. An interesting aspect of the characteristic exponent of Lévy processes is that
they can be written as a product of the so called Weiner—Hopf factors, see for example |21, Theorem
6.15]. This means that there exists two Bernstein functions x and & (see [26] for a definition) such
that

—1(i0) = k(—i0)k(i0), 0 € R. (1)

There are, of course, many functions x and & which satisfy (1). However imposing the requirements
that the functions x and & must be Bernstein functions which analytically extend in € to the
upper and lower half plane of C, respectively, means that the factorisation in (1) is unique up to a
multiplicative constant.

The problem of finding such factors has considerable interest since, probablistically speaking,
the Bernstein functions x and & are the Laplace exponents of the ascending and descending ladder
height processes respectively. The ascending and descending ladder height processes, say (hy : t > 0)
and (iLt :t > 0), are subordinators that correspond to a time change of X; := sup,«; Xs, t > 0 and
—X, := —infs<; X, t > 0, and therefore have the same range, respectively. Additional information
comes from the exponents in that they also provide information about the potential measures



associated to their respective ladder height processes. So for example, U(dzx) := fooo P(h; € dz)dt,

x > 0, has Laplace transform given by 1/k. A similar identity hold for U , the potential of h.
These potential measures appear in a wide variety of fluctuation identities. Perhaps the most
classical example concerns the stationary distribution of the process reflected in its maximum,
X; — Xy, t > 0 in the case that lim;_,o X; = oo. In that case, we may take lims_, oo IPx(Yt - X; €
dz) = k(0)U(dx); c.f. [27]. The ladder height potential measures also feature heavily in first passage
identities that describe the joint law of the triple <XTJ’XTJ—7YTJ—)’ where 7F = inf{t > 0: X; >

x} and z > 0; cf. [13]. Specifically, one has, for v > 0, v > y and y € [0, z],
P(X,+ —z€du,z— X + €dv,x— Yﬁi edy) =U(x — dy)ﬁ(dv — y)II(du + v),

where II is the Lévy measure of X. A third example we give here pertains to the much more subtle
property of increase times. Specifically, an increase time is a (random) time ¢ > 0 at which there
exists a (random) € > 0 such that Xy < X; < Xy for all ¢/ € [t —e,t] and ¢ € [t,t +]. The
existence of increase times occurs with probability 0 or 1. It is known that under mild conditions,
increase times exist almost surely if and only if [, U(z)~'U(dz) < 0. See, for example, [14] and
references therein.

Within the class of Lévy processes which experience jumps of both sign, historically there have
been very few explicit cases of the Wiener—Hopf factorisation identified within the literature. More
recently, however, many new cases have emerged hand-in-hand with new characterisations and
distributional identities of path functionals of stable processes; see e.g. the summary in [21, Section
6.5 and Chapter 13|. A Lévy process (X, P,) is called an a-stable process for « € (1, 2] if for every
¢>0, (cX.—a; : t > 0) under P, has the same law as (X,P.;). The case when oo = 2 corresponds
to Brownian motion, which we henceforth exclude from all subsequent discussion. It is known that
the Laplace exponent can be parametrised so that

B(if) = —10]*(e™ P L gy + e T2y 1), O ER,

where p := P(X; > 0) is the positivity parameter and p = 1 — p. In that case, the two factors
are easily identified as x(\) = A and #()\) = A*? for A > 0, with associated potentials possessing
densities proportional to z®~! and z®*~! respectively for > 0. In part, this goes a long way to
explaining why so many fluctuation identities are explicitly available for stable processes.

In this paper, our objective is to produce a new explicit characterisation of a second type of ex-
plicit Weiner—Hopf factorisation embedded in the a-stable process, the so-called ‘deep factorisation’
first considered in [20], through its representation as a real-valued self-similar Markov process. In
the spirit of the interplay between the classical Wiener—Hopf factorisation and fluctuation theory of
the underlying Lévy process, our analysis will produce a collection of new results for stable processes
which are based on identities for potentials derived from the deep factorisation. Before going into
detail regarding our results concerning the deep factorisation, let us first present some of the new
results we shall obtain en route for stable processes.

1.1 Results on fluctuations of stable processes

The first of our results on stable processes concerns the ‘point of closest reach’ to the origin for
stable processes with index a € (0,1). Recall that for this index range, the stable process does not
hit points and, moreover, liminf; , | Xs| = co. Hence, either on the positive or negative side of
the origin, the path of the stable process has a minimal radial distance. Moreover, this distance is



achieved at the unique time m such that | X;| > |X,,| for all t > 0. Note, uniqueness follows thanks
to regularity of X for both (0, 00) and (—o00,0).

Proposition 1.1 (Point of closest reach). Suppose that a € (0,1), then for x >0 and |z| < x,

'l—ap) x4z
(1 —a)l(ap) 22|«

Py(Xm € dz) = (x — |2 (z +]2))* " dz.

In the case that a = 1, the stable process does not hit points and we have that limsup,_, | X;| =
oo and liminfy_, | X¢| = 0 and hence it is difficult to produce a result in the spirit of the previous
theorem. However, when « € (1, 2), the stable process will hit all points almost surely, in particular
0 .= inf{t > 0: X; = 0} is P,-almost surely finite for all z € R. This allows us to talk about the
‘point of furthest’ reach until absorption at the origin. To this end, we define 7 to be the unique
time such that |X;| < |Xm| for all t < 7{%. Note again, that uniqueness is again guaranteed by
regularity of the upper and lower half line for the stable process.

Proposition 1.2 (Point of furthest reach). Suppose that o € (1,2), then for each x > 0 and |z| > x,

a—1 _ A
Py (X € dz) = W(\sz(yzy—x)“f’ 2] 4+ 2) !

_(a B 1)x/1IZ/x(t B l)ap_l(t + 1)aﬁ—1dt> )

Finally we are also interested in radially reflected stable processes:

X
L t>0,

R, =
N VAVE =

where M; = sup,<; | Xs|, t > 0. It is easy to verify, using the scaling and Markov properties, that
for t,s > 0,

M, .
My s = | X <|Xt| \ MS|Xt|—a> ; Xivs = | Xe| Xgix, -

where (M X ) is such that, for all bounded measurable functions f,
E[f(M&Xs)’U(Xu Tu S t)] = g(Sign(Xt))7

where g(y) = E,[f(Ms, Xs)]. It follows that, whilst the process R is not Markovian, the pair
(R, M) is a strong Markov process. In forthcoming work, in the spirit of Chaumont et al. [9], we
shall demonstrate how an excursion theory can be developed for the pair (R, M). In particular, one
may build a local time process which is supported on the closure of the times {t : |R;] = 1}. The
times that are not in this supporting set form a countable union of disjoint intervals during which
R executes an excursion into the interval (—1,1) (i.e. the excursion begins on the boundary (—1,1)
and runs until existing this interval). We go no further into the details of this excursion theory
here. However, it is worthy of note that one should expect an ergodic limit of the process R which
is bounded in [—1,1]. The following result demonstrates this prediction in explicit detail.



(a) p=1/2 (b) p=1/3

Figure 1: The stationary distribution of the reflected process for two different values of p. Note
that the concentration of mass at the values 1, —1 is a consequence of the time that X spends in
close proximity to M. Moreover, the concentration of mass at 0 is a result of the division of X by
large values of M during periods that it crosses from a positive radial extrema to a negative radial
extremum and vice versa.

Theorem 1.3 (Stationary distribution of the radially reflected process). Suppose that o € (0,1).
Let x € (—1,1), then under P,, R has a limiting distribution u, concentrated on [—1,1], given by

p(dy)

dy

Capsin(amp)y™ (1 =) (1 +y)* + capsinfamp)y*(1 — y)* (1 +y)*~ ify €[0,1]

Capsin(amp)ly| = (1 = ly)** (1 + [y))*? + ca psin(amp)|y| = (L = [y) (L + [y)**~"  ify € [-1,0).

where
I'(1 —ap)

Ca,p = QQ[SiIl(OUTp) + s1n(aﬂﬁ)]T(1 - Q)F(aﬁ),

with a similar definition for cq ;. (See Figure 1 which has two examples of this density for different
values of p.)

1.2 Results on the deep factorisation of stable processes

In order to present our results on the deep factorisation, we must first look the Lamperti-Kiu
representation of real self-similar Markov processes, and in particular for the case of a stable process.

A Markov process (X, P;) is called a real self-similar Markov processes (rssMp) of index o > 0 if,
for every ¢ > 0, (¢X,-a; : t > 0) has the same law as X . In particular, an a-stable Lévy process is an
example of an rssMp, in which case « € (0,2). Recall, every rssMp can be written in terms of what
is referred to as a Markov additive process (MAP) (£, J). The details of this can be found in Section
2. Essentially (&, J) is a certain (possibly killed) Markov process taking values in R x {1, -1} and
is completely characterised by its so-called MAP—exponent F' which, when it exists, is a function



mapping C to 2 x 2 complex valued matrices', which satisfies,
(eF)ig = Boile™®; 1, = j.

The Lamperti-Kiu transformation states that for each rssMp X, there exists a MAP (¢, J) such
that
Xt:ﬂ'{t<7{0}} = ‘LE|6£‘P<|Z‘7“‘§) Jgp(\x|—at) (2)

where 710 :=inf{t > 0: X; = 0} and

p(t) = inf{s >0 :/ 2% du >t}.
0

We use the convention that inf () = oo and ef>~ = 0. We will denote the law of (£,.J) started from
(x,i) by P, ;. Conversely, every Markov additive process (£, J) on R x {1, —1} defines a real-valued
self-similar Markov process via (2).

Thus, in the case X; > 0 for all ¢ > 0, we have that J; = 1 for all ¢ > 0. In this special
case the transformation is known as the Lamperti transform and the process £ is a Lévy process.
The Lamperti transformation, introduced in [24], has been studied intensively, see for example [21,
Chapter 13| and references therein. In particular, the law and the Weiner—Hopf factorisation of ¢ is
known in many cases, for example [21, Section 13.4] and [7].

Conversely, very little is known about the general case. In this paper, we shall consider the case
when X is a a—stable process (unit first hitting the origin in the case that « € (1,2)) and note that
in that case (£, J) is not necessarily a Lévy process. In this case the MAP—exponent is known to be

 Dla=2)1+2) M(a—2)I'(1+ 2)
Fo= | MM et | ®
F(ap)T(1 — ap) I(ap—2)I'(1 —ap+2)

for Re(z) € (—1,a), and the associated process is called the Lamperti-stable MAP.

Similar to the case of Lévy processes, we can define k and k& as the MAP—exponent of the
ascending and descending ladder height process for (&, J), see Section 2 for more details. In the case
when X is an a-stable process, we have that, for each A € R,

—F(i)) = ARV T ARk(—i)), (4)

where

A ( sin(amp) 0 > (5)

0 sin(amp).

The factorisation in (4) can be found in [15] and [16] for example. Our main result identifies the
inverse factors k' and £~ explicitly.

'Here and throughout the paper the matrix entries are arranged by

Ain A1
A= ’ ’ .
(Afl,l A71,71)



Theorem 1.4. Suppose that X is an a-stable process then we have that the factors k™ and k™!
are given as follows. For a,b,c € R, define

1
U(a,b,c):= /0 u®(1 — u)’(1 + uw)°du. (6)

Case o € (0,1): For all A > 0,

KT
1 (e tap-1ap) S u( - 1ap,0p- 1)
T 22T(1 - o) \ B2 w(A—1,0p,0p - 1) H220(A - 1,05 —1,ap)
and
ATV
1 r(;gj)ﬂ)q;@\_a,aﬁ— 1, ap) %\P(A—a,aﬁ, ap—1)

Case o« = 1: For all A >0

e i (U(A—1,-1/2,1/2) W(A—1,1/2,—1/2)
RN =AY = <\11()\—1,1/2,—1/2) \If(/\—l,—1/2,1/2))'

Case a € (1,2]: For all A >0

1 _ _ 5 _ s
K1) = 2 (\P(i Lap—1ap) ¥A—1apap 1)>

2 UA—1Lap,ap—1) Y(A—1,ap—1,ap)

(a—1)2 <\I/()\—1,ap—1,aﬁ—1) \Il(/\—l,a,o—l,a[)—l)>

20 +a—-D)\¥A-Lap—Tl,ap—1) ¥(A—1,ap—1,ap—1)
and
’%_1()\) _ a—1 Sin(a\:[;())\_aa aﬁ_ 1,ap) %W()\-O{,O&ﬁ, ap — 1)
2 m\ll()\—a,ap, ap—1) V(A —a,ap—1,ap)

_ - 7 ) sin(amp)
200 +a— 1) \ gy —aap—Lap—1) (A —a,ap—1,ap—1)

sin(amp)

(a—1)2 ( U(A—a,ap—1,ap—1) Sin(a”ﬁ)\y()\_a,ala_1704/)_1))

Note that the function ¥ can also be written in terms of hypergeometric functions, specifically

_Tla+1)I'(®+1) —c a+1
\Ij(agbac)_ F(a+b+2) 2F1 a+b+2?_1 )

where o F is the usual Hypergeometric function. There are many known identities for such hyper-
geometric functions, see for example [1]. The appearance of hypergeometric functions is closely tied
in with the fact that we are working with stable processes, for example [17, Theorem 1| describes



the laws of various conditioned stable processes in terms of what are called hypergeometric Lévy
processes.

The factorisation of F first appeared in Kyprianou [20]. Here our factorisation of F~! is com-
pletely independent from the derivation in [20], moreover there is no clear way to invert the factors
in [20] to derive our results. The Bernstein functions that appear in [20] have not, to our knowledge,
appeared in the literature and are in fact considerably harder to do computations with, whereas
the factorisation that appears here is given in terms of well studied hypergeometric functions. Our
proof here is much simpler and shorter as it only relies on entrance and exit probabilities of X.

Expressing the factorisation in terms of the inverse matrices has a considerable advantage in
that the potential measures of the MAP are easily identified. To do, this we let u denote the unique
matrix valued function so that, for A > 0,

o

/ e M, j(z)dr = n;jl()\) for each i,j = +1.
O 9.

Similarly, let @ denote the unique matrix valued function so that, for A > 0,
- z?]

o
/ e My j(x)dr = ki () for each 4,5 = £1.
0

The following corollary follows from Theorem 1.4 by using the substitution x = —logwu in the
definition of .

Corollary 1.5. The potential density are given by the following.

Case a € (0,1): Forz >0,

u()
S (F(Fl(;g)ﬁ) (L= e (14 e7)2 St (1= ) (1 + e‘m)a’j_1>
20T a) \ 529 (1 — emo)of (14 emoyor—t L8 (1 — emayar=i(1 4 em)or
and
()
Spu— ( T (DY R SR e - ) ¢ 1)a,,_1>
T 20T(1— ) —Si;gczgfrﬁf)(rl(;g‘f) (% — 1)2P(e® 4 1)p~1 r Q&;“f’ (€% — 1)1 (e* 4 1)o7 :

Case a=1: Forxz >0,

. 1— e 2)"1/2(1 1 =2 \1/2 (1 — e=2)1/2(] 4 —7)—1/2
u(e) = o) = ({1 0 S e G )

Case a € (1,2]: Forz >0,

a—1 <(1 — e—l‘)ap—l(l 4 6—33)04[7 (1—e®)2r(1+ e—ac)aﬁ—l)

9 (1 _ efx)aﬁ(l 4 efx)apfl (1 _ efx)aﬁfl(l 4 efx)ap
(a _ 1)2 (1 _ e—x)ap—l(l + e—x)aﬁ—l (1 _ e—x)ap—l(l + e—x)aﬁ—l
— m ((1 . e—x)aﬁ—l(l + e—x)ap—l (1— e—m)aﬁ—l(l + e—x)ap—l)

u(x) =



and

A o—1 (e® — 1>aﬁ*1(€x + 1) :igéz:z; (e — 1)2°(e® + 1)01,071
u(x) = T o5 | sin(anp)

Slomy) (oo _ ) (er 4 1)) (8 — 1) (e 4 1)
(a—1)2 (e® — 1)~ 1(e® 4 1)1 7:]38:2; (e® — 1)~ 1(e® 4 1)1
20 +a—1) 7212&:2) (e® — 1)~ 1(e® 4- 1)1 (€% — 1)~ L(e? 4 1)1

Before concluding this section, we also remark that the explicit nature of the factorisation of
the Lamperti-stable MAP suggests that other factorisations of MAPs in a larger class of such
processes may also exist. Indeed, following the introduction of the Lamperti-stable Lévy process
in [6], for which an explicit Wiener—Hopf factorisation are available, it was quickly discovered that
many other explicit Wiener—Hopf factorisations could be found by studying related positive self-
similar path functionals of stable processes. In part, this stimulated the definition of the class
of hypergeometric Lévy processes for which the Wiener—Hopf factorisation is explicit; see [17, 19,
18]. Ome might therefore also expect a general class of MAPs to exist, analogous to the class of
hypergeometric Lévy processes, for which a matrix factorisation such as the one presented above,
is explicitly available. Should that be the case, then the analogue of fluctuation theory for Lévy
processes awaits further development in concrete form, but now for ‘hypergeometric’ MAPs. See
for example some of the general fluctuation theory for MAPs that appears in the Appendix of [12].

1.3 Outline of the paper

The rest of the paper is structured as follows. In Section 2 we introduce some technical background
material for the paper. Specifically, we introduce Markov additive processes (MAPSs) in more detail,
the Weiner—Hopf factorisation for MAPs and the Lamperti-Kiu transformation for real self-similar
Markov processes. We prove the results by separating into three cases. In Section 3 we show
Theorem 1.4 for « € (0, 1), and Proposition 1.1. In Section 4 we prove Theorem 1.4 for o € (1,2),
and Proposition 1.2. In Section 5 we show Theorem 1.4 for « = 1. Finally in Section 6 we prove
Theorem 1.3.

2 MAPs and matrix Wiener—Hopf factorisation

2.1 Markov Additive Processes

In this section we will work with a (possibly killed) Markov processes (§,J) = ((&,J;) : t > 0) on
R x {1,—1}. For convenience, we will always assume that J is irreducible on {1,—1}. For such a
process (&, J) we let P, ; be the law of (£, J) started from the state (x,1).

Definition 2.1. A Markov process (€, J) is called a Markov additive process (MAP) on R x {1, -1}
if, for any t >0 and j = —1,1, given {Jy = j}, the process ((&s+t — &ty Js+t) + 8 > 0) has the same
law as (&, J) under Py ;.

The topic of MAPs are covered in various parts of the literature. We reference [11, 10, 2, 3, 8, 16]
to name but a few of the many texts and papers. It turns out that a MAP on Rx {1, —1} requires five
characteristic components: two independent and Lévy processes (possibly killed but not necessarily
with the same rates), say x1 = (x1(¢) : t > 0) and x_1 = (x—1(¢) : t > 0), two independent random



variables, say A_; 1 and Ay _; on R and a 2 x 2 intensity matrix, say Q = (gi ;)i j=+1. We call the
quintuple (x1, x—1,A—1,1,A1,-1, Q) the driving factors of the MAP.

Definition 2.2. A Markov additive processes on Rx {1, —1} with driving factors (x1, x-1, A-1,1,A1,-1, Q)
is defined as follows. Let J = (J(t) : t > 0) be a continuous time Markov process on {1, —1} with
intensity matriz Q. Let o1,09,... denote the jump times of J. Set o9 = 0 and & = x, then for

n > 0 iteratively define

€(t) = Luso(€(on=) + USEL ) s VXG0 (= 0n) € [on,0n11),

(n)

where (U-(?))nzo and x;

p are i.4.d. with distributions A; ; and x; respectively.

It is not hard to see that the construction above results in a MAP. Conversely we have that
every MAP arises in this manner, we refer to [2, XI.2a] for a proof.

Proposition 2.3. A Markov process (§,J) is a Markov additive process if and only if it is there
exists a quintuple of driving factors (x1,x-1,A-11,A1,-1,Q). Consequently, every Markov additive
process on R x {1, =1} can be identified uniquely by a quintuple (x1, X—1,A—1,1,A1,-1, Q) and every
quintuple defines a unique Markov additive process.

Let ©_1 and 11 be the Laplace exponent of y_; and x; respectively (when they exist). For
z € C, let G(z) denote the matrix whose entries are given by G; ;(2) = E[e**7] (when they exists),
for i # j and G ;(z) = 1. For z € C, when it exists, define

F(z) := diag(¢1(2), ¥-1(2)) = Q 0 G(2), (7)

where diag(v¢1(z),%—1(z)) is the diagonal matrix with entries v1(z) and ¥_;(z), and o denotes
element-wise multiplication. It is not hard to check that F' is unique for each quintuple (x1, x-1,A—1,1,A1,-1, Q)
and furthermore for each ¢,j = +1 and ¢t > 0,

Eoi[e*; J; = j] = (X)), ;.

For this reason we refer to F' as a MAP-exponent.

2.2 Ladder height process and the matrix Weiner—Hopf factorisation

Here we will introduce the notion of the ladder height processes for MAPs and introduce the matrix
Weiner—Hopf factorisation. It may be useful for the reader to compare this to the treatment of these
topics for Lévy processes in |21, Chapter 6].

Let (&,.J) be a MAP and define the process £ = (& : t > 0) by setting & = sup,«; £&s. Then it can
be shown (see [15, Theorem 3.10] or [4, Chapter IV]) that there exists two non-constant increasing
processes L= = (I_lg_l) :t>0) and LM = (Egl) .t > 0) such that L(=1 increases on the closure
of the set {t : (&, J;) = (&, —1)} and LU increases on the closure of the set {t : (&,J;) = (&,1)}.
Moreover L=V and L) are unique up to a constant multiples. We call L = L1 4+ L) the local
time at the maximum.

It may be the case that L., < 0o, for example if ¢ drifts to =00. In such a case, both L(;l) and
Efj} are distributed exponentially. Since we the processes L{~1 and L") are unique up to constants,
we henceforth assume that the normalisation that ensures

both LY and LYY are distributed as exponentials with rate 1. (8)



The ascending height processes H+ = (H," : t > 0) is defined as
(Ht—‘r)Jt—i_) = (EE;%Jit—l) te [07 I_/oo)v

where the inverse in the above equation is taken to be right continuous. At time Lo, we send
(H*,J") to a cemetery state and declare the process killed. It is not hard to see that (H*,J*) is
itself a MAP.

We denote by x the MAP-exponent of (HT, J1)

and note that k() is well defined for at least § > 0. Similarly, we define (H—,J~), called the
descending height, by using —¢ in place of £. We denote by & the MAP-exponent of (H~,.J 7).
For a Lévy process, its dual is simply given by its negative. The dual of a MAP is a little bit

more involved. Firstly, since J is assumed to be irreducible on {1, —1}, it follows that it is reversible
with respect to a unique stationary distribution 7 = (71, 7—1). We denote by Q= (Gij)ij=+1 the
matrix whose entries are given by

N U¥

i = ;iq]‘,z'-
The MAP-exponent, F', of the dual (é J ) is given by

F(z) = diag(¢1(—2), ¢-1(=2)) = Q 0 G(—2), (9)

whenever the right-hand side exists. Define

1 0
Ar = .
Then the following lemma follows immediately from (9).

Lemma 2.4. For each z € C,
F(z) = AglF(_z)TAm

where F(—z)T denotes the transpose of F(—z).

Remark 2.5. Notice that
qi1,1 —q1,1
F(0) = ’ T =-Q.
( ) <—Q—1,—1 Q—1,—1> Q
Hence the matriz Ay can be computed leading to the form in (5). Also note that it is sufficient to
use a constant multiple of the matriz A .

A~

Similarly to how we obtained (H™,J"), we denote by (H™, j+) the ascending ladder height

process of —X, which is obtained from the dual process (&, .J).
We denote by & the MAP-exponent of (ﬁ +tJ ).

The matrix & can also be obtained from k, the MAP—exponent of the descending ladder height
process, as follows,

k(0) = < i 7;;11 ) o k() 6eC (10)

where once again o is for element-wise multiplication.
Now we can state the Weiner—Hopf factorisation for MAPs as it appears in (4). The proof of
this theorem can be found in [16] and [15].

10



Theorem 2.6. For each A € R we have that
F(i)) = —AYR(EN)T Ark(—i)).

We complete this section by remarking that if X is an rssMp with Lamperti-Kiu exponent (§, J),
then ¢ encodes the radial distance of X and J encodes the sign of X. Consequently if (HT, JT) is
the ascending height process of (¢,.J), then H™ encodes the supremum of | X| and J* encodes the
sign of where the supremum was reached. Similarly if (H~,J~) is the descending height process
of (§,J), then H™ encodes the infimum of | X| and J~ encodes the sign of where the infimum was
reached.

Although it is not so obvious, one can obtain & from k as given by the following lemma which is
a consequence of particular properties of the stable process. We leave the proof out (see [20, Section

7]).
Lemma 2.7. For each A > 0,

R(IN) = ATTK(IA + 1 — )| pepAr,

where |pesp indicates exchanging the roles of p with p.

3  Results for a € (0,1)

In this section we will prove Theorem 1.4 for o € (0, 1) and Proposition 1.1.

Suppose that (X,P,) is a a-stable process started at z # 0 with a < 1 and let (£, J) be the
MAP in the Lamperti-Kiu transformation of X. Let (H~,J~) be the descending height process of
(&, J) and define U™ by

U, ;(x) =/ Poi(H, <z J; = j)dt.
0

Note that we set Po;(H, < x;J, =j) =0if (H~,J") is killed prior to time t. We will see that
T Ul_j(x) is differentiable, and we will pre-emptively denote by u~ the derivative matrix of U ™.
We present an auxiliary result.

Lemma 3.1. For an a-stable process with o < 1 we have that for all x > 0,

u (z) =
. F(;(a[%p) (ex _ 1)04371(6:): + 1)0{,0 F(;(agp) (ex . 1)aﬁ(ex + 1)ap71
QO‘F(l — Oé) F(l — O‘ﬁ) (em _ 1)ap(€x + 1)a[7—1 F(l — O‘ﬁ) (eac _ 1)o<p—1(e;r + 1)043

[(ap) [(ap)
Now we show that Theorem 1.4 follows from Lemma 3.1.

Proof of Theorem 1./ for o < 1. Let k be the MAP—exponent of (H—,J~). Then for A > 0,

/0 e_)‘xu;j(x)dw = /0 Eoile M J7 = jldt = ﬁ;jl()\).

11



Thus from Lemma 3.1, we can integrate to obtain e.g., for 7,7 = —1 and A > 0,
_ I'(1 — ap) < B X
1 A 1
E—l,—l( )= 22T (1 — a)T(ap) / e M(e” — 1)1 (e” +1)*dx

(a
I'(1—ap)
20<I‘(1 —a)[(

1
A—« ap—1 ap
U 1—w)* (1 4+ u)*du,
— [ e werta )

where we have used the substitution u = e™®. Once the remaining components of k! have been
obtained similarly to above, we use (10) to get £~! and then apply Lemma 2.7 to get k~'. The
details of the computation are left out. O

We are left to prove Lemma 3.1. We will do so by first considering the process X started at
x > 0. The case when x < 0 will follow by considering the dual X = —X.
Recall that m is the unique time such that

| Xt > | X for all ¢t > 0.

Our proof relies on the analysis of the random variable X,,,. Notice that X,, may be positive or
negative and takes values in [—z, z].

Before we derive the law of X,,, we first present the following lemma which appears in [22,
Corollary 1.2].

Lemma 3.2. Let 771D :=inf{t > 0:|X;| < 1}. We have that, for z > 1,
P, (r1) — o) = D(a),

where

_ F(l - Oép) (e=1)/(=+1) ap—1 -

Lemma 3.2 immediately gives that the law of | X,,| as
Pe(| Xm| > 2) = ®(x/2), for z € [0, z].

Indeed, the event {|X,,| > 2} occurs if and only if 7(~*2) = co. From the scaling property of X we
get that P, (7(7%%) = o0) = ]P’JC/Z(T(_M) =00) = ®(x/2).
We first begin to derive the law of X, which shows Proposition 1.1.

Proof of Proposition 1.1. Fix x > 0. Similarly to the definition of m, we define m™ and m~ as
follows: Let m™ be the unique time such that X,,+ > 0 and

Xe 2> X+ for all t > 0 such that X; > 0.
Similarly let m™~ be the unique time such that X,,- <0 and
X < X0 for all t > 0 such that X; < 0.

In words, m™ and m~ are the times when X is at the closest point to the origin on the positive
and negative side of the origin, respectively. Consequently, we have that X,, > 0 if and only if
X+ < |X,-|- We now have that

2 _
P(| Xy | > w5 Xpp+ > 0) = Py(r) = 00) = @ <W> ;

U+ v

12



where ® is defined in Lemma 3.2 and in the final equality we have scaled space and used the
self-similarity of X.
Next we have that for z > 0,

P.(X,, € dz) 0 0 2r+2z—w
7—:—7]PJ X — ‘X _Z:—7¢ —_—mmmm —2
dz Ov (X[ > 2 Xy > )= ov ( 2+ )‘U
x4+ z T
- o' (f) 11
222 z (11)

The proposition for z > 0 now follows from an easy computation. The result for z < 0 follows
similarly. 0

Now we will use (11) to show Lemma 3.1. We will need the following simple lemma which
appears in the Appendix of [12].

Lemma 3.3. Let Ty :=inf{t > 0:& < 0} then fori,j=—1,1 andy >0,

Let us now describe the event {7~ = 00; J,(m) = j} in terms of the underlying process X. The
event {Ty = 00; J,m) = 1} occurs if and only 1f T( L) = 50 and furthermore the point at which
X is closest to the origin is positive, i.e. X, > 0. Thus {T;; = oo; Jo(m) = 1} occurs if and only if
Xm > 1. Using Lemma 3.3 and (11) we have that

U (2) =Poi(Ty = 005 Jypm) = J) = Pe:c(X > 1)
1 X
:/ e’ +2)P <e> 27 2dz
2 1 z
1
:/ (1+1/u)® (u)du,
2 )1

where in the final equality we have used the substitution u = e*/z. Differentiating the above
equation we get that

I'(1—ap)

T —a)l(ap) ¢ V7€ OT 12)

upy (@) = 5(° + )P () =

Similarly considering the event {T;" = oo; Jo(m) = —1} we get that

1 I'(1— ap)

up o (z) = (e = 1e'(e") = 770 —a)T(as) © " 1) (e” +1)* 1,

Notice now that Uy only depends on « and p. Consider now the dual process X = (=X :t>0).
This process is the same as X albeit p <+ p. To derive the row u_; j We can use X in the

computations above and this implies that u_y ;s the same as up but exchanging the roles of p
with p. This concludes the proof of Lemma 3.1

13



4 Proof of Theorem 1.4 for a € (1,2)

In this section we will prove Theorem 1.4 for a € (1,2). Let X be an a-stable process with a € (1, 2]
and let (£, J) be the MAP associated to X via the Lamperti-Kiu transformation. The proof here
is very similar to that of the case when a < 1, thus we skip some of the details.

Since a € (1,2] we have that 71} := inf{t > 0: X; = 0} < co and X_0;_ = 0 almost surely.
Hence it must be the case thar & drifts to —oo. Recall that 77 as the unique time for which m < 710}
and

| Xom| > | X for all + < 7{%},

The quantity we are interested in is Xz. We begin with the following lemma, which is lifted
from [25, Corollary 1] and also can be derived from the potential given in [23, Theorem 1].

)

Lemma 4.1. For every z € (0,1) and y € (x,1),

a—1
Po(rth < 7000 = (a - 1) < — ) v (

1—192

1 -y
r—y

where

B(z) = /lz(t —1)or Lt 4+ 1)P gy,

Next we prove Proposition 1.2 by expressing exit probabilities in terms of ®. In the spirit of the
proof of Proposition 1.1, we apply a linear spatial transformation to the probability P, (T(_u’”)c <
710}) and write it in terms of ®.

Proof of Proposition 1.2. Similar to the derivation of (11) in the proof of Proposition 1.1, for each
x>0 and |z| > z,

o e () e ()

The result now follows from straight forward computations. O

Again we introduce the following lemma from the Appendix of [12].
Lemma 4.2. Let Ty :=inf{t > 0: & > 0} then fori,j = —1,1 and y > 0,
P_yi(To = 003 Joam) = J) = Us(y)-

Similar to the derivation in (12), we use (13) and Lemma 4.2 to get that

d —x
uljl(a:) = %Pe—z (Xm S (6 ,1))

T T e SR )

a—14d [ 1 T/ T
= 1 duu—a (14 w® (u) — (@ —1)® (u))
= QT_le*(afl)x ((1 +eM)d (e*) — (a—1)® (ex))
_ QT_le—(a—l)x ((em _ 1)040—1(61’ + 1)""é — (a— l)fi) (ex)) , (14)
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where in the third equality we have used the substitution u = z/e™*. Now we will take the Laplace
transform of wq ;. The transform of the ® term is dealt with the following lemma. The proof follows
from integration by parts which we leave out.

Lemma 4.3. Suppose that v > a — 1, then
& — 1
/ e P )dr = =V (y —a,ap — 1,ap — 1).
0 Y
Next we have
o'} R 1 R
/ e~ (Fa—lz (e _ yar—l(e® 4 1)2Pqy = / w1 = w) N1 4 w)*Pdu = U(A—1,ap — 1, ap),
0 0

where we have used the substitution v = e~ %.

together with Lemma 4.3 we get that

Integrating (14) and using the above equation

a—1 ) (a—1)2
A) = TN —1,ap—1,ap) — o
k1,1(A) 5 Y ,ap —1,ap) A ta—1)

UA—1,ap—1,ap—1).
Similar proofs give k; jl for the remaining 4, j. The formula for &~ follows from Lemma 2.7.

5 Proof of Theorem 1.4 for o =1

In the case when a = 1, the process X is a Cauchy process, which has the property that lim sup,_, . | X:| =
oo and liminf; , | X;| = 0. This means that the map (&, J) oscillates and hence the global min-
imum and maximum both do not exist so that the previous methods cannot be used. Instead we
focus on a two sided exit problem as an alternative approach. (Note, the method we are about to
describe also works for the other cases of «, however it is lengthy and we do not obtain the new
identities en route in a straightforward manner as we did in Proposition 1.1 and Proposition 1.2.)

The following result follows from the compensation formula and the proof of it is identical to
the case for Lévy processes, see [4, III Proposition 2] and |21, Theorem 5.8].

Lemma 5.1. Let (H™,JT) be the height process of (€,J). For any x > 0 define T, := inf{t > 0 :
H;" >z}, then for any x > 0 and i = +1,

Pyi(z — H};_ € du; H;T —x € dy; ijm_ =1 Jr}; =1) =u;1(z — u)n(dy + u)du,
where T is some o—finite measure on [0,00).

Next we will calculate the over and under shoots in Lemma 5.1 by using the underlying process
X. This is done in the following lemma.

Lemma 5.2. Let7; :=inf{t > 0: X; > 1} and 7~ ;= inf{t > 0: X; < —1}. Then forz € (—1,1),
ue0,(1—z)V1andy >0,
(1—u+2z)/? (u+ty)>?

_Y . _ . R -\ _
P.(1 XT1+7 € du; XT1+ 1 € dy; XTf'* >0 <7) = A—u—2)2 @~ u+y>1/2dudy.

15



Proof. First [23, Corollary 3| gives that for z € (0,1), u € [0,1 — z) and v € (u, 1],

P.(1—- er'— € du;l — XT1+7 € dv;XT;- —ledy;r < T )

1/2(1 _ 2\1/2
= 1 z 71 —v) dudy,
T(1—u—2)/2(v—u)/2(1 —u)(v + y)?

where 77" ;= inf{t > 0 : X; < 0}. We wish to integrate v out of the above equation. To do this, we
make the otherwise subtle observation that

/ﬂwu—UWWv—w*ﬂw+yr%=w+yr%rﬂo/i&u—@”%*“(r+515>4

92 ™ 1—wu
= 1—u)= 21 (2,1/2,2; -
w2 0- 0] of (2172210

= Slu+y) A w1+y)

where in the first equality we have used the substitution z = (v —u)/(1 —u). In the second equality
we have used [1, Theorem 2.2.1] and the final equality follows from the Euler—transformation [1,
Theorem 2.2.5].

Hence, for x <1, u € [0,1 — z) and y > 0,

P.(1 —Xﬁ, € du;XTl+ —1le dy;v'l+ <T15)

21/2

(= u— ) (L + ) P+ )2

1
=3 dudy. (15)

Next we have that for v € [0, (1 —2) V1) and y > 0,

d d =
@@Px(1 — X €du Xy —ledy; X v >0 <77y
d d _
= %CTy 2 (1 fXT1+ < U,XT1+ — 1<y <7, 1)|v=u
d d = v y + —
dvdfypz;i;u (1 — X7'1+— < 5 u’XTfr 1< T < Ty ) ’v:u
1 (w—l—l—u)l/z
2—u
=5(2-u)™
2 a2 1/2 7, 00\3/2
(1= st —ogte) (e at) T (5)
(1 —u+x)/? 1

(= u—a) 22— ut ) 2t )7

where in the second equality we have used the scaling property of X and in the third equality we
have used (15). O
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Notice now that for each x > 0 and 7 = +1,

d d
d—d—Poﬂ-(m—H;f_ SU;H; —ﬂfﬁy;J;_ = 1;J;§ =1)
u y x x x x
d d Y T—U y+z + —
= %@Pi(XT;_ > e X <X > 05Tk <o)
d d Y —u, Y. R -
:%@PiC_I(XTr— >e ,X7_1+ <e ’X71+* >0,7’1 <7'71)
_ uu (et 4 je—%)1/2 1

(e—u _ Z'e—ac)l/2 (6y + e—u)l/?(ey _ e—u)3/2’

where in the second equality we have used the scaling property of X and in the final equality we
applied Lemma 5.2. The above equation together with Lemma 5.1 gives that for x > 0,

uLl(x) . 1+e®
u_11(z) 1—e®

(16)

Next we claim that

Z wi(e) = (1—e @) V214 e )2 4 (1 —e)V2(1 4 e77)7 V2, (17)
i==+1

This follows from existing literature on the Lamperti transform of the Cauchy process and we briefly
describe how to verify this. Observe that (| X¢| : t > 0) is a positive self-similar Markov process and
thus can be expressed as the time—changed exponential of a Lévy process, say x = (x¢ : t > 0),
see for example [21, Chapter 13]. The sum on the left-hand side of (17) is precisely the potential
of the ladder height process of x. We can verify that the potential of the height process of x has
the form given by the right-hand side of (17) as follows. The characteristic exponent of the height
process of x is given in |7, Remark 2|. Then the identity in (17) can be verified by checking that,
up to a multiplicative constant, the Laplace exponent of the right-hand side matches with that in
[7, Remark 2].

Now we can finish the proof. Notice first that the Cauchy process is symmetric, thus u;; =
u_;_; for each i,j € {1, —1}. Thus from (17) we get

Y uip(z)=(1—e )P0+ e )2 H (1) 21+ (18)
i==+1

Solving the simultaneous equations (16) and (18) together with the fact w;; = w_; _; gives the

result for u. To obtain @ we note that the reciprocal process X := 1/Xy,, t > 0 has the law of a
Cauchy process, where 6, = inf{s > 0 : [ |Xy| 2du > t} (see [5, Theorem 1]). Theorem 4 in [20]

also shows that X has an underlying MAP which is the dual of the MAP underlying X. It therefore
follows that @ = w. This finishes the proof.

Remark 5.3. Notice that we also get the jump measure 7™ appearing in Lemma 5.1 as

ey
m(dy) = (e¥ + 1)1/2(€y _ 1)3/2

dy.
Up to a multiplicative constant, this can also be seen in [20, equation (14)].
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6 Proof of Theorem 1.3

Recall that (R, M) is a Markov process. Since R takes values on [—1,1] and (£, J) does not exhibit
lattice behaviour, it must have a stationary distribution which does not depend on the initial position
of R. For z,y € [-1,1] and j = 41, when it exists, define

pi(dy) := lim Py (|Re| € dy; sgn(Ry) = j).

Notice that the stationary distribution p is given by u = p1 + p—1 (here we are pre-emptively
assuming that each of the two measures on the right-hand side are absolutely continuous with
respect to Lebesgue measure and so there is no ‘double counting’ at zero) and hence it suffices to
establish an identify for ;.

Using duality we have for i, j € £1,

EO:i [e_ﬁ(éﬁq_gﬁq); Jch = ]j| - Z Eo,i [e_ﬁ(éfeq_&Bq); Jmeq = k? JtEq = .] )
k=1
where e, is an independent and exponentially distributed random variable with rate ¢ and me,
is the unique time at which & obtains its maximum on the time interval [0, e,]. Appealing to the

computations in the Appendix of [12], specifically equation (22) and Theorem 23, we can develop
the right-hand side above so that

1 _
B, . _ | B ey —Eeq). _
/0 Y :U’](dy) E%EO,Z {e ¢ > aJeq ‘7}

. *ﬁge *fe . — — 1
= ]ql\lL'Bl Z EO,Z' |:€ ( q q),‘]mce(] = ]ﬂ, J@q —]i|

k=+1
—1i . [EE— 0 765@1- . = l
= lqlﬁ)l k:Z:H Po’Z (Jmeq = k‘) E(]J {e ,Jmeq k] TI'i
= > (¢ = 00)m[R(B) M,
k==+1

where, for j = =1, ﬁj is the excursion measure of (£ — &,.J) from (0, ) under ].30’]-. Note, we
have also used the fact that, me, converges to +oo almost surely as ¢ — oo on account of the
fact that limsup, ., |X¢| = co. Recall, moreovoer, that we have normalised local time such that
(¢ =00) = 1.

Since [#(8) 1],k is the Laplace transform of @, x, it now follows that

3 )

a0 et =m; Z wj (), z > 0.

y=e~* k=+1

Said another way,
s .
pidy) = 2 Y ap(=logy)dy,  ye[0,1].
Y r=x1

The proof is completed by importing the specific expressions for the quantities in the right-hand

side above, in particular from (5) and Corollary 1.5. 0
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