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Abstract In this paper we consider the problem of finding
entrance laws at the origin for self-similar Markov processes in
R?, killed upon hitting the origin. Under mild assumptions, we
show the existence of an entrance law and the convergence to
this law when the process is started close to the origin. We
obtain an explicit description of the process started from the
origin as the time reversal of the original self-similar Markov
process conditioned to hit the origin.
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Part 1
Entrance laws of ssMp

1. Introduction. Suppose H is a locally compact subspace of R?\ {0} (d > 1). An H-
valued self-similar Markov process (ssMp for short) (X,P) = ((Xi)e0,{P. : 2 € H}) is an
‘H-valued cadlag Markov process killed at 0 with P, (X, = z) = 1, which fulfils the scaling
property, namely, there exists an « > 0 such that for any ¢ > 0,

((¢Xe-at)t>0, P,) has the same law as ((X;)i>0,Pe.) V2 € H.

It follows from the scaling property that H = ¢H for all ¢ > 0. Therefore H is necessarily a
cone of R?\ {0} which has the form

H=0¢RxS)

where S is a locally compact subspace of S¥~! and ¢ is the homeomorphism from R x S9!
to R4\ {0} defined by ¢(y,0) = fev.

The crucial tool in the study of ssMp is the Lamperti-Kiu transform which we now describe.
Suppose first that (X,P,) is an H-valued ssMp started at z € H with index @ > 0 and
lifetime (, then there exists a Markov additive process (MAP for short, see Section 2 for a
rigorous definition) (£,0) on R x S started at (log ||z||, arg z) with lifetime (, such that

(1.1) Xo = expl&e}Opin <y V20,

where ¢(t) is the time-change defined by

(1.2) o(t) = inf {s >0 /O explad,} du > t} |

and (, = fOC | Xs||~*ds. We denote the law of (£,0) started from (y,0) € R x S by P,,.
Conversely given a MAP (¢, 0) under P,y with lifetime (,, the process X defined by (1.1)

is a ssMp started from z = fe¥ with lifetime ( = foc” e®¢:ds. Roughly speaking, a MAP is a
natural extension of a Lévy process in the sense that © is an arbitrary well behaved Markov
processes and ((&:, ©¢)i>0,Pzg) is equal in law to ((& + x,O4)i>0,Pop) for all 2 € R and
0 € S. Whilst MAPs have found a prominent role in e.g. classical applied probability models
for queues and dams, c.f. [4] when © is a Markov chain, the case that © is a general Markov
process has received somewhat less attention. Nonetheless a core base of literature exists in
the general setting from the 1970s and 1980s thanks to e.g. [14, 15, 23, 24].

We denote HU{0} by Ho. In this paper we look for entrance laws of ssMp at the origin, that
is, the existence of a probability measure Py such that the extension of (X, {P, : z € Hy})
is self-similar and in particular Py = w-limys5, .o P, in the Skorokhod topology. In Theorem
6.1 we will prove a general result with as weak assumptions as our study of the underlying
MAPs permits. However, the statement of this theorem comes relatively late in this paper
on account of the large amount of fluctuation theory we must first develop for general MAPs
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in order that the sufficient conditions to make sense. It is quite natural to expect that
conditions for the existence of an entrance law will be highly non-trivial as the process ©
could essentially take on any role as a regular Markov process. Nonetheless, we want to give
a flavour of the main results. We give immediately below the collection of conclusions we are
aiming towards, i.e. (C1)-(C5), without addressing the technical assumptions.

The first two conclusions (C1) and (C2) seem rather specialist and pertain to analogues of
classical fluctuation results for Lévy processes, but now in the setting of MAPs. However
they hold value in the sense that they provide key building blocks for some of the conclusions
lower down.

(C1): Conditioning to remain negative: There exists a family of probability measures

P — {15;9 1y < 0,0 € S} such that ((€, @),f’i) is a right continuous Markov process taking
values in (—o0,0] X S. Moreover, For ally < 0,0 € S,t >0 and A € F,

/\\L . ~

Py,e (A) = q1_1>%1+ Pyo (A’t < ey Tar > €Q) J

where (£,0) under lsy,g is equal in law to (=&, 0), when —& =y € R, and Oy = 0 € S,
eq s an independent and exponentially distributed random wvariable with parameter q and
T =inf{t >0:& > 0}.

(C2): Stationary overshoots and undershoots: For every 6 € S, the joint probability
measures on S X R~ x & x RT

Pyy (@ij €dv,{+ —re€dy,0.+€dp,{+—1€ dz)

converges weakly to a probability measure p(dv,dy,d¢,dz) as v — +4o00. In particular,

Poy (57; —redz, O+ € dqb) converges weakly to a probability measure denoted by p®(dz, d¢)
and Py (57;_ —r€dy, O+ € dv) converges weakly to a probability measure denoted by

p®(dy, dv).

As alluded to above, we can use the former two main conclusions above to build a process
which acts as an entrance law of the ssMp from the origin.
(C3): Candidate entrance law: Let P denote the law of X given by the Lamperti-Kiu

transform (1.1) under I:’;g with y = log||z|| and @ = argz, and let o denote the image
measure of p© under the map (y,0) — ye. Then the process (X, ]P’g\) has a finite lifetime
¢ with Xz = 0. Its time reversal process (X = X(g,t),)Kg,IP’g\) is a right-continuous
Markov process satisfying that Xo = 0 and X, # 0 for all t > 0. Moreover, ((Xt)0<t<5,1[]’g\)
is a strong Markov process having the same transition rates as the ssMp (X, {P,,z € H})
killed when exiting the unit ball.

Moreover the stability of the overshoots and undershoots in the second main conclusion also
helps with identifying the above candidate entrance law as unique in the sense of weak limits
on the Skorokhod space.

(C4): Uniqueness of the entrance law: There exists a probability measure Py such that
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w-lim,_,g P, = Py in the weak sense of measures on the Skorokhod space.

- (X AP., 2z € Ho}) is a ssMp.

- (X, AP.,z € Ho}) is a Feller process.

- (Xt)yero, Po) ds equal in law with (rX (e ran_)icras, Bp) for every r > 0.
Under Py the process X starts at 0 and leaves 0 instantaneously.

GRS Lo de

Here 72 = inf{t > 0: || X;| > r}. Moreover, Py is the unique probability measure such that
the extension (X, {P,,z € Ho}) is a right continuous Markov process satisfying either (3) or
(5) listed above.

Finally we can reassert the stability of the underlying MAP over/undershoots to generate
the unique entrance law at the origin, but now in terms of the ssMp.

(C5): Stability of the the process started at the origin: For every § > 0, ((XT(?—v XT?>’ P,)
converges in distribution to ((XT(?—7XT§>7PO) as z — 0, and

w- lim P, (arg(Xﬁ@J € dv, log || X,o_| € dy, arg(X,s) € do, log | X,o| € dz)

H32z—0
— P, (arg(xﬁe,) € dv, log | X,o_| € dy, arg(X,s) € dg, log|[X,o] € dz)
= p(dv,dy, d¢, dz).

In the case d = 1 and the ssMp is positive, several works have established the limit Py =
w-lim,_,o P, using various techniques, see |7, 8, 9, 10, 30|. Recently, in the case when ssMp is
allowed to take negative values as well, entrance laws were obtained in [16]. Our contribution
here is two-fold. Firstly we show, under suitable conditions, the existence of an entrance law
at 0 for an ssMp in any dimension. Secondly, our proof here uses a path reversal argument
which follows the spirit of [8, 16|, but works directly with the reversal of the ssMp rather
than the underlying MAP. We note that this approach in dimension d =1 or d = 1/2 (i.e.
positive self-similar Markov processes), taking all fluctuation theory for granted in those
settings (which means fluctuation theory of Lévy processes for d = 1/2), our approach offers
an alternative simple proof of the entrance laws.

The rest of this paper is structured as follows. In Section 2 we develop the fluctuation
theory for general MAPs, which we believe is of independent interest and should be useful
in studying ssMps. In Section 3 we present the notions of duality as well as several time-
reversal results about duality. Among them, Lemma 3.2 plays a key role in our path reversal
argument. In Section 6, we present our working assumptions and the main result, Theorem
6.1, which gives the existence of a weak limit of P, as z — 0, as well as the explicit law of the
process started at the origin. Our main result is proved step by step through the arguments

in Sections 4-8: Firstly we define a family of probability measures {13:9, z <0,0 € S} under
which the MAP (£, 0) is conditioned to stay negative. Then we show both the overshoots
and undershoots of the MAP (£, ©) have stationary distributions, which we denote by p©

~

and p® respectively. Starting from ((¢, @),Pi@) we construct by Lamperti-Kiu transform the
process (X, IP’Q\) which is conditioned to stay inside the unit ball and hit the origin in a finite
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time. By time-reversing (X,P*) from its lifetime, we get the law of (X,Py) until first exit
from a unit ball. Finally we prove P is the weak limit of P, as z — 0.

13 7

Notations: Throughout this paper, we use “:=" as definition and «L7 to mean “equal in
distribution”. For a Polish space (E,d), Dg[0,T") denotes the space of functions w : [0,7) —
E U {0}, where 0 is a cemetery state, such that there exists ( = ((w) € [0,7], called the
lifetime of w, with the property that ¢ — w(t) is a cadlag function from [0,¢) to E and
w(t) = 0 for t > (. We endow the space Dg[0,T") with the Skorokhod topology which makes
it into a Polish space. We use the shorthand notation Dg = Dg[0, 00). Every function on F
is automatically extended to £ U {9} by setting f(9) = 0. For a point z € R?, we use ||z||
to denote its Euclidean norm. For ¢ > 0, we use e, to denote an independent exponential
random variable with mean 1/gq.

Part 11
Fluctuation theory of MAPs

2. Preliminaries.

2.1. Markov additive processes and Lévy systems. Suppose (&, ©;)i>o is the coordinate pro-
cess in Dgys and ((€,0),P) = ((&, ©1)t>0, Foos (Ft)i>0, {Puro : (2,0) € R x S}) is a (possibly
killed) Markov process with P, o (§y = =, © = 0) = 1. Here (F3);>¢ is the minimal augmented
admissible filtration and F,, = :;Og Fi.

DEFINITION 2.1. The process ((£,0),P) is called a Markov additive process (MAP) on
R x & if, for any ¢ > 0, given {(&;, O5), s < t}, the process (§s+¢ — &y Os1t)s>0 has the same
law as (&5, Os)s>0 under Py, with v = ©,. We call ((£,©),P) a nondecreasing MAP if £ is a
nondecreasing process on R.

For a MAP process ((£,0),P), we call £ the ordinate and © the modulator. By definition
we can see that a MAP is translation invariant in &, i.e., ((&, ©¢)i>0, Prg) is equal in law to

(& +2,0¢)150,Poyp) for all z € R and 6 € S.

We assume throughout the paper that (6;):> is a Hunt process and (&):>o is quasi-left
continuous on [0, ¢). Then it is shown in [14] that there exist a continuous increasing additive
functional ¢t — H, of © and a transition kernel II from S to § x R satisfying

T1(0, {(6,0)}) = 0, /R (1A [y2) T1(0, {0} x dy) < +00 V0 € S,

such that, for every nonnegative measurable function f : S x S x R — R™, every § € S and



PO,@ [Z f<®s—) 957 58 - 55—)]]‘{6577£®s or fs#ga}]

s<t
t
Z%{/MJ‘W%MWWQMM-
0 SxR

This pair (H,II) is said to be a Lévy system for ((£,©),P). It can be shown that for every
nonnegative predictable process Z and nonnegative measurable function g : SXR xS xR —
RT,

Py Z Zsg(0s—,&-,04,&)L{e,_+0, or 53#5}]
s<t
t
21) :m{/w%] m&mmm@xw@+ﬁ
0 SxR

foralld € S and t > 0.

The topic of MAPs are covered in various parts of the literature. We refer to |15, 14, 4, 5,
12, 25] to name but a few of the texts and papers which give a general treatment.

For the remainder of the paper we will restrict ourselves to the setting that, up to killing of
the MAP, H, = t. On account of the bijection in (1.2), this naturally puts us in a restricted
class of self-similar Markov processes through the underlying driving MAP, however, as we
will shortly see, it is on the MAP that we will impose additional assumptions.

2.2. Fluctuation theory for MAPs.

DEFINITION 2.2. For any y € R, let 7,7 := inf{t > 0: & > y}. We say that ((£,0),P) is
upwards regular if
Poo (17 =0)=1 VheS.

Suppose (X,P) = ((X;)i>0, {P. : z € H}) is the ssMp associated to the MAP ((£,©),P) via
Lamperti-Kiu transform. We say (X,P) is sphere-exterior reqular if ((£,0),P) is upwards
regular. For r > 0 let 77 := inf{¢t > 0: || X;|| > r}. Immediately by the definition, (X, P) is
sphere-exterior regular if and only if P, (7" = 0) = 1 for all z € H with |z| = 1.

In the remaining of this paper we assume that the MAP ((£, ©),P) is upwards regular. This
assumption is not really necessary but nevertheless avoids a lot of unnecessary technicalities
when we explore the fluctuation properties.

2.2.1. Excursion from maximum/minimum. Let Et i= Supg; & and Uy := f_t—ft. Then under
Py the process (04, &, Up)i>o is an S X R x RT-valued right process started at (6,0, 0), whose
transition semigroup on (0, +00) is given by

Pf(v,z,u) =Py, [f (@t,& +z,uVE —&)]
6



for every t > 0 and every nonnegative measurable function f : S x R x Rt — R*. We shall
work with the canonical realization of (0, &, U;)i>o on the sample space Dgyrxr.

We define M := {t > 0: U; = 0} and M its closure in R*. Obviously the set R*\ M¢ is an
open set and can be written as a union of intervals. We use G and D, respectively, to denote
the sets of left and right end points of such intervals. Define R := inf{t > 0: t € M“}. The
upwards regularity implies that every point in S is regular for M in the sense of [23]. Thus
by [23, Theorem (3.10)] there exist a continuous additive functional ¢t — L; of (0, U;)i>o
which is carried by S x R x {0} and a kernel 8 from S x R x R into Dsxrxr satisfying
Pl (69, &0, Uo) # (0, ,u)) = 0, P*** (R = 0) = 0 and P (1 — e ) < 1 such that

> Zsf o b,

seG

+o0o
(22) P079 = PO,Q |:/ Zsm@svfs,o(f)d[_/s
0

for any predictable process Z and any nonnegative measurable function f on & x R x R.
Moreover, under 3%%, the process (O, &, Uy )i>o is a strong Markov process with semigroup
(P})i>0 defined above. In particular, if f is measurable with respect to o((0;, U;)i>0), then
the right-hand side of (2.2) equals

+oo
Po, [ / zsqs@s@(f)dis]
0

where B denotes the transition kernel defined for the process (04, Ut)t>0. It is known (see,
for example, [24, Section 3|) that there is a nonnegative measurable function ¢* : § — R*
such that

t t t
(23) / 1{56]\_4}(15 = / 1{56M5l}d8 = / €+(@S)dj—15 Vit 2 0 Po’g—a.S.
0 0 0

Let L; ' be the right inverse process of L;. Define & := ¢ -t and e =6 I for all ¢ such
that ;! < 400 and otherwise &' and ©; are both assigned to be the cemetery state 9. One
can easily verify that (L; %, &, 0, )0, (&7, 0] )i>0 and (L, 0, ), are all MAPs where ©F
is the modulator. These three processes are referred to as ascending ladder process, ascending
ladder height processes and ascending ladder time process, respectively.

Suppose the set R*\ M¢ is written as a union of random intervals (g, d). For such intervals,
define
(Ug—i-s; @g—I-S) if 0 S s<d-— g,

(Ud, @d> if s Z d— g.

(e, VL ))520 is called an excursion from the maximum and (9 := d — g is called its lifetime.

We use € to denote the collection {(el”) (w), i (w))sz0 : g € G(w), w € Dsypxr}, and call it
the space of excursions. Let n ‘be the image measure of B0 under the mapping that stops
the path of (O, U;)i>o at time R. A direct consequence of |26, equation (4.9)] is that for any



bounded measurable functionals F : Drys — R and G : Rt x Drys — R,

0 1Y G, (& O)icy) F (€9, 909)

geG

(2.4) ~ P, [ / ARG (s, (6, O0)ics) /g n, (de, dv) F (e, 0)

We call {n; : 0 € S} the excursion measures at the maximum.

The excursion measures at the minimum, descending ladder process are defined analogously
replacing £ by —¢.

2.2.2. Fluctuation identities. For t > 0, define
Go:=sup{s<t:s€ M’} and O, := Og Lig=e;,1 T Og-Lig>e,,)-

By the right continuity of sample paths one can easily show that g; is equal to sup{s < t:
s € M} with probability 1. Since by quasi-left continuity, Pog(& # &) = 0 for all ¢t > 0, we
also have Py g (gt =sup{s<t:se€ ]\7[}) =1 for all £ > 0. We claim that Py g-almost surely
g+ is not a jump time of the process (£, 0) for every § € §. Otherwise one can construct a
stopping time 7' such that

P09<TEGQMCZ Er %fTOI“@T %@T)

Note that (2.2) implies Py g (deé L{v,>0 or 997¢QQ}> = 0. We get from the above inequal-

ity that Pgg (T cGNMY: & < fT) > 0. This brings a contradiction, since if we apply
Markov property and upxivard§ regularity at T, we get &y > & > & for s sufficiently
small on the event {T"€ G N M, &4 < &p}, which is impossible.

The following identity is one of the key tools in extending identities from the fluctuation the-

ory for Lévy processes to MAPs, it is the base to establish a Wiener-Hopf type factorisation
for MAPs.

PROPOSITION 2.3.  Suppose that ((£,0),P) is a Markov additive process taking values in
R x S. Then for every bounded measurable functions F,G : [0,00) X R x & — R and every
fes,

PO,Q [G(gefﬂ geq’ éeq)F(eq - geq’ geq - geq’ ®eq)]
— / e "G(r, z,v) g0 (0)F(0,0,0) + 0} (F(eq, €c,, Ve,) Lie,<cy)] Vo' (dr, dv, d2),
R+ xSxR+t

where

Lo
V'g-i-(d?’, dv,dz) = P(]’g [/ H{Zs_ledr, @jedv, §:€dz}ds
0



PROOF. It is known from the above argument that Pgg-almost surely g, is not jumping
time of (§,0), and thus (&, ©.,) = (§.,, O, ) Pog-a.s. Then we have

Pog [F (€4 — Gey» ey — Eopr Oe, )G (Teys ey O,
=Py [Fleq = Goy o, — EoyrOey) G (Teys oy O Ty )
+Pog [F(eg = ey o, — oy Oe,) G (e €err O0,) Liee, <ty

= Pog [F(0.0.60,)Gleg e, O0,) L .,

+ PO,G Z 1{g<eq<g+§(9)}F(eq -9, E((%i)fg7 ﬁéi)fg)G<ga 597 @g)
| 9eG
= PO,O [F<O7 0’ @eq)G(eq’ geq’ @eq) ﬂ{fquEeq}}
(25) -+ P079 / dis]l{s<eq}G(S, és, @S)ngs (F(eq — S, 6eqfsa ﬁeqfs) Il{eq—s<C}):| )
LJ O

where in the third equality we used the identity (2.4). For the second term we can use the
memorylessness of the exponential distribution and a change of variable to yield

PO,G |:/ df/s]l{s<eq}G(S; gs» @s)ngs (F<eq - S, Eeq—sa ﬂeq—s) IL{eqs<(j}):|
0

=Py { / dL,e™ G (s, &5, O,)ng, (F(eq,eeq,ﬁeq)]l{eq<<})]
0

[en]

(2.6) — Py, [ / - dse 0 G (L, 65, 01)ns. (F (e, co,. ﬁeq)]l{eq<<})] .
For the first term in (2.5) we use (2.3) to get

Pog [F(0.0.00,)C (e 60,100, Lie, .,

= qPoy _ /0 +OO e "G(t,&,0,)F(0,0,0;) 1 e M}dt]

- oo
= qPO,G / e_th(t7 gt) @t)F(07 07 @t)£+(®t)st:|
0

Lo - _
(2.7) — Py / et G(LT! €5, OF)F(0,0,01)0 (07 )ds
0

By plugging (2.6) and (2.7) into (2.5) we get that
Po,g [F(eq - geq’ geq - 5eq’ @eq)G(geq’ geq’ (:)eq)}
Lo L
= PO,O[/ dse_QL; G (Ls_la :a @:) (q€+(@:)F(O7 O’ @:) + ng+ (F(eq7 €eq> Veq)]l{eq<§}) )} :
0 ]

We have thus proved this proposition. O



COROLLARY 2.4. For every 0 € S, we have
PO,Q (geq € dz, geq - feq € dw, @eq € dv)

+oo
= o(dw)lt(v) / ge "Vt (dr, dv, dz)
0

+/ e "n/ (e, € dw, v, € dv, e, <)V, (dr,du, dz).
(ru)eRT xS

The excursion measures allow us to gain some additional insight into the analytical form of
the jumping measures of the ascending ladder processes.

PROPOSITION 2.5.  Suppose ((§,0),P) is a MAP with Lévy system (H,11) where H; =t \C.
Then the ascending ladder process ((L™1,&T,0%),P) has a Lévy system (HT,T'") where
H=tA(" and

(0, dv, dr,dy) = do(dr)et (0)I1(0, dv, dy) + ng (I (v, dv, e, + dy) , 7 < ) dr

for ;v € S, r > 0 and y > 0. Here (T denotes the lifetime of ({T,07). In particu-
lar, the ascending ladder height process (((7,0%),P) has a Lévy system (HT,IIT) where
I17(0, dv, dy) = T (0, dv, [0, +00),dy) for §,v € S and y > 0.

PROOF. To prove this proposition we apply the theory for Lévy systems and time-changed
processes developed in [18]. We consider the strong Markov process Y; := (©y,&;, U;, t) on
the state space S x R x R x [0, 00) where U; = & — &. Recall that M = {t > 0: U, = 0}
and R = inf{t > 0 : t € M}. It is known that the local time at the maximum L; is a
continuous additive functional carried by F := & x R x {0} x [0, 00). The argument in the
beginning of this subsection implies that almost surely the “irregular part” (in the sense of
[18]) G' := {s € G : U, # 0} is an empty set. Let Y; := (©;,&", U, L) be the time-
changed process of ¥; by the inverse local time L; *. It is a right process on the state space F,
and following the arguments and calculations in [18, Section 5|, one can get a Lévy system
for this time-changed process. In fact, applying [18, Theorem 5.2] here, we have

Poo | D F (07,65 L0568 L7 e ety
s>0 ’
—+00
= Poy {/ ds/ F(ef ¢, s,v,y,u)l{g#y} (‘Bej’g’o’s (@R €dv, {pedy, R e du)
0 SXRx[0,00)
(2.8)

+ (OO, dv,dy — £)5,(du))] .

for every nonnegative measurable function F. Here %% denotes the kernel %0 trivially
extended to include the pure drift process issued from s. So, note that under %% the
process (Y;)i~o is a Markov process with the same transition rates as (Y,P, ). Using this
and the translation invariance, we have

(2.9)
;BG,I,O,S []1{8<R,§R;£J:}f(@]?a SRa R)} = mao,o |:]‘{S<R}P557®s (f(@rarvgrgr +a,s+ T(T)]l{ﬁTS->0}>:| )
10



for any s > 0 and nonnegative measurable function f. Since (£, ©) has Lévy system (H, IT)
with H; =t A (, we have

Pz,v [f(grgafr(j + z, TJ)1{57J>0}:| - Pz,v y

o+
/ " ds / 0.6+ 2 + g, $)I(O,, dv, dy)
0 (_531"'00)

where we used that, on the event {éTgr > 0}, 7 it is the first jump time of &, that takes

¢ into the positive axis, and we apply (2.1). Plugging this in (2.9), and using the Markov
property under %%, we have

PUSES [ﬂ{s<R,5R7ﬁw}f(@R’ ¢r B)]

T
— OO0 []1{5<R}P®5,—Us (/ dr/ fv,=U, + 2 +y,r)I(O,,dv, dy))]
0 (Ur,+00)

¢
— n; |:I]-{5<C}/ dr/( X )f(v, —€, —i—x—i—y,r—kt)l_[(vr,dv,dy)} .

By letting s — 0+, we get from above equation that

ﬂ{x#y}me,x,o,t (@R cdv, &g edy,R e du) = (du—t)n; {/( Li—e,+2tacaylL(vr, dv, dz)] )

'r7+00)
Plugging this in (2.8) yields that

Y F(ef., & Lt el ¢ L) 1{5:#?}]

s>0

PO,G

+oo
=Py, {/ ds/ F(Of,&F s,0,68 +y, s+ 1) [0o(dr) T (ODI(OF, dv, dy)
0 Sx(0,400)x(0,00)

+ ng: (I1 (v, dv, €, + dy) ,7 < () dr] :

which in turn yields the assertion of this proposition. O

REMARK 2.6. Suppose £ is a non-killed R-valued Lévy process with triplet (a,o?,II) for which
0 is regular for (0,4o00). This process can be viewed as the projection of a upwards regular MAP
(£,©) where the modulator O is equal to a constant. Therefore all the above results we obtained
for MAP can be applied to this Lévy process. We use Py (resp. f’o) to denote the law of £ (resp.
—¢&) started from 0. It is a known fact that its ascending ladder process (L; ', & )i>0 is a (killed)
bivariate subordinator. Let II* be the Lévy measure of £*. Proposition 2.5 yields that for y > 0,

“+o0o
(2.10) " (y, +00) = £ (y, +00) +nt [/ (e, +y, —i—oo)dr] ,
0

where (T is the drift coefficient of L; Land nt is the excursion measure at maximum. It follows by
Proposition 2.3 that for any nonnegative measurable function F : R — R

~ g/t F(0) +n* [fog qe_qu(es)ds}

Po [F(&e, —&e,)] = (o) :

(2.11) Py [F(&,)] = @(q) / e F(2)V*H(dr,dz)
Rt xR+
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where V*(dr,dz) := Py [ 0+°o ]l{fgledr,gjedz}ds}’ and ®(q) (resp. ®(q)) is equal to the Laplace
exponent of the (killed) subordinator (L; ')¢>o under Py (resp. Py). The Wiener-Hopf factorization

N

of Lévy process implies that ®(q)®(q) = kq for some constant £ > 0. We may and do assume x = 1.
By this and (2.11), we get

Py [F(&, —&,)] ®(q)

(tF(0) +nt [/OCF(es)ds] = lim

where Ut (dz) := Py [fOJrOO ﬂ{gjedz}dt} . In the second equality we use the fact that (¢, — &, Po) 4
(geq,lso). Setting F(-) = II(y + -, +00) in above equation and plugging it in (2.10) we get
(g +00) = [ Tz 4y 400U (d2)
R+

for y > 0. This is Vigon’s identity for Lévy process.

Define

Lo
/0 Il{ej cdv, £F Edz}dS] .

PROPOSITION 2.7.  Suppose (£,0) is a MAP with Lévy system (H,I1) where H, = t A\ (.
Then for any x > 0, § € S and any nonnegative measurable functions f,g: S x Rt — RT,

U, (dv,dz) :=Pgy

Poo [ £(O 10 = €5 )95 & = )Lie_ o]

= / Uy (dv,dz) [0 (v) f(v, 2 — 2)G(v,x — 2)
Sx[0,z]
¢
(2.12) +n; (/ f(l/s,:p—z—l—es)G(l/s,x—z+es)ds)] ,
0
where G(v,u) 1= fSX(u o) g(o,y — w)ll(v,de,dy) forve S and u € R. In particular

PD,9 |:g<®7';7 67-; - x)]l{gT;_ >ac}:|

(2.13) [ v | 96,2 +y — D) (v, o, dy).
Sx[0,z] Sx(z—2z,400)

12



PROOF. Let A&, := &, — & for any s > 0. By (2.1) we have
Poo [£(O 0 = £ )9(0,5, 6 — ) 1ge o)

=Pos | > f(Ou 2 =6 )9(00 &am + AL = 2) Ui, <o 1a6s—250)

| s>0

r r¢
_ Py, / Lt ooy f(O0 2 — £)ds /
LJ O

SxR+

g(U> 55 +y— x)]l{ﬁs+y—m>0}ﬂ(657 dU, dy):|

LS
(2.14) =Pgy / Lig, <o f(Os, 2 — &)G(O4, 7 — {s)ds} :
LJo
We set F(y,v) := f(v,x —y)G(v,x — y), then the right-hand side of (2.14) equals
¢
PO,B |:/ H{ESS:E}F<§Sa@s)dS:|
0

¢ ¢
— P079 |:/ ]]-{gsgx,seMCl}F(fw @5)d3:| +P0,9 |:/ I]'{Esﬁx, ngcl}F(gs, @5)d8:|
0 0

+o00 3 d
= PO,G |:/ ﬂ{fsgm}F(fsy @s)€+(@s)dLs:| + PO,G Z H{Eggx} / F(Ssa @S)ds
0 g

gEG‘

By (2.4) the second term equals

+o0 ¢ B B
P0’9 |i/ ﬂ{f_sfll?}ngs </ F (58 — €, Vr)) dLs:| .
0 0
Hence we have

Pog [f(@T;_, r =&+ )9(0,+, 6+ — ﬂ?ﬂ{%n}]

+o0 ¢ B ~
~Pos | [ 1 (FO0F€ 00 10t ([ FE-cn)))aLl]
Loo ¢
=Py [/o LIS (ﬁ(@j)F( o0+ ng: (/0 F(&f - Er,l/r))> ds]

- Uit (dv, d2) ( ¢+ (0)F(v,2) +nF CF(z—eT,VT)dT ,
Sx[0,z] 0

which yields (2.12). (2.13) follows directly from (2.12) and Proposition 2.5.

We say a path of £ creeps across level z if it enters (x, +00) continuously, that is, the first
passage time in (x,400) is not a jumping time. The next lemma we present is about what
happens on the event of creeping. It follows from [15, Proposition (1.5) and Theorem (1.7)].

LEMMA 2.1.  Suppose the ascending ladder height process ((§7,07),P) has a Lévy sys-

tem (HT,IIT) where H; = t A (. If the continuous part of ¥ can be represented by

13



+
Ot/\g at(07F)ds for some nonnegative measurable function a™ on S, then for every 6 € S,

Lo+ ()=03 Uy (dv,dz) has a density ug (dv, x) with respect to the Lebesque measure dx. More-
over, if we define T,f :=inf{t > 0: & > x}, then for any nonnegative measurable function
f:S8xS xR xR — RT and almost every x > 0,

(2.15) Poy (5;;7 <z= ;;) _0,

and

(2.16) Py {f <@;£L_,@;;r,x —&h & —$> n{mzx}} - / at () f (v, v,0,0)u (dv, ).
T, S

LEMMA 2.2.  Suppose the MAP ((¢,0),P) has a Lévy system (H,11) where Hy =t AN C. If
(x,0) € (0,400) X S satisfies that

(2.17) Po’g (ST;_ <zxT= fT;) =0,

then
PO,Q (@T;r* 7& @TSL’ ST;F - ZL‘) =0.

PROOF. For x > 0, let 7|, 1) denote the first time when & enters [z, +00). The upwards
regularity of ((§,©),P) implies that 7, 1) = 7,7 Pgg-a.s. It follows by (2.17) and (2.1) that

Py (@Tgf # @Tja 57; = x) = Py (@ij # @T;, 5};7 = 57; = x)

= P()’@ Z 1{57‘<x7vr€[075)7 O;_#06s, gs—zfs:I}]

Ls>0

- rdoo
= PO,@ / ﬂ-{fr<x,Vr€[0,s), {SZJ:}H(@Sa S \ {68}7 {0})d8:|
0

+oo
= Pyy /0 IL{T[MOO):& 5.9:93}1'[(@5,8 \ {6}, {0})ds]
-0

The last equality is because the integral inside Py equals 0. O]

PROPOSITION 2.8.  Suppose the MAP ((£,0),P) has a Lévy system (H,I1) where H, = t A(

+
and the continuous part of £ can be represented by fotM a™(07F)ds for some nonnegative

measurable function a™ on S. Then for every 6 € S, every nonnegative measurable function
f:8 xS xRt xRt = R" and almost every x > 0,

(218)  Poy [f(O4_,O 4,0 =&+ &+ — x)ﬂ{gT;:x}} = /Scﬁ(v)f(v,v,o, 0)uy (dv, z),

where ug (dv, x) is the density function given in Lemma 2.1.
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PROOF. It is easy to see from Proposition 2.5 that the conditions of Lemma 2.1 holds
under the assumptions of this proposition. Fix an arbitrary § € S. Let R denote the set
of points for which both identities in Lemma 2.1 hold. Then Leb(R™ \ R)=0. We note that
(€+,0.4) = ( T+,®+ ). If we can prove Pog(f +_ <x:§w) = 0 for every x € R, then

by Lemma 2.2 ©_+_ = ©O_+ Pgg-as. on {{+ = z}, and (2.18) is a direct consequence
of (2.16). Now ﬁx an arbltrary r € R. Let 7, o) denote the first time when & enters
[7,400). (2.15) implies that . = Pgg-a.s. on the event {§ + < =¢ +}, which in turn

implies that 7j, yo0) < 7,7 Pog-as. on {€+ <z =&} Hence Py ({4 <z =¢4) =0,
otherwise Py ¢ (T[I,Jroo) <7t ) > 0, which contradicts the upwards regularity of (£, ©). Hence
we complete the proof. O

We note that the result in Proposition 2.8 holds only for almost every > 0. In the following
we give sufficient conditions under which it holds for every = > 0.

PROPOSITION 2.9. Suppose the conditions in Proposition 2.8 hold. Let (X,PP) denote the
ssMp underlying ((§,0),P) via Lamperti-Kiu transform. If (X,P) is a Feller process and
at(v) >0 for everyv € S, then for every 6 € S and every x > 0,

P()’g (f_r;-_ < T or @T;-_ #* @T;-;f_r;- = LL’) =0,

and for every bounded continuous function g : RT x 8§ x & x Rt x Rt — R, the function
T PO,H [9(7—;7 @T;r—7 67';7'1‘ - g‘rj—7€‘r; - ‘T)]]‘{ﬁ +:x}:|

is Tight continuous on [0,+00). Moreover, the density function uf (dv,z) of U, (dv,dx) can
take a unique version such that v — a*(v)uy (dv,x) is right continuous on (0,+00) in the
sense of vague convergence. In this case, (2.18) holds for every x > 0 and every nonnegative
measurable function f:S x 8 x Rt x Rt — R*.

PROOF. Forevery (z,0) € R* xS, let p’(2) :=Pog (&,+ = x),pi(x) :=Pog ({4 = &4 =
and pf(z) := p’(z) — pf(z) = Pog ({4 < 2 =&.+). By Proposition 2.8 we have g(at)
for almost every x > 0. Since a™(v) > 0 for all v € S, it follows by Proposition 2.7 a
Lemma 2.1 that

Q—-O\_/

Py ({’T;r > IL‘) = /3 [ ]ﬁj(x — 2)U, (dv,dz)
x [0,z

= / dz/Hj(m—z)u;’(dv,z).
0 s

Here I} (u) = I (v, S, (u, +00)). Obviously from the above equation z — p?(x) = 1 —
Py (fnf > x) is right continuous on [0, +00). Suppose z,,x € RT and z,, | z. Since X is a
Feller process, it follows by [17, Theorem 4.2.5] that

(X, ]P)gefa:n) — (X, ]Pgefx)

in distribution under the Skorokhod topology. For n > 1, let (Y™ P*) and (Y,P*) be cou-
plings of (X, Pge—r ) and (X, Py« ) respectively, such that Y™ — Y P*-a.s. in the Skorokhod
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topology. Let ¢ := inf{t > 0: ||¥;]| > 1} and ¢, := inf{t > 0: ||Y;"|| > 1} for n > 0. Since
X is sphere-exterior regular, so is Y, which implies that ||Y;|| # 1 for any t < ¢ P*-a.s. In
view of this, it follows by [32, Theorem 13.6.4] that

(Y vy ™y = (v, ,Y,) P-as.

Sn—) S0O—? ~ S0

asn — +o00. Hence <(XT19—’ XTle), ]P)@e—a:n> converges in distribution to <<X7'16—’ Xﬁe)’ Pgefav).
The weak convergence yields that

Aw) = Py (&5 =&y =0)
— Pee—z <XT167 e Sdfl,XTle e Sd*l)
> lim sup Pgo—en (XT@_ €St X o € Sd‘l)
n—-+o0o ! b
= limsup p?(z,).
n—-+00
This and the right continuity of p?(-) imply that liminf,, ., . p§(x,) > p4(z). Hence
(2.19) ph(x) =Poy ((r_<z=¢64)=0 Vz>0.
It then follows by Lemma 2.2 that
(2.20) Po,g (@ij #+ @T;,ET;L = x) =0, Vz>0.
We need to show that

lim P(),g [g(T:;, @T;rn_’ @T;n,xn — fﬂ_;n_, fﬂ_;n — :L‘n)]l{g " =xn}]

n—-+o0o

(2.21) — Py, [g(r;, O O w—Er b — )l +:m}] .

for any sequence x,,z € R*, x, |  and any bounded continuous function g : Rt x S x § x
RT xR™ — R*. Let A, :={{,+ =x,}and A := {{_+ = x}. By the strong Markov property
and the fact that lim, o4 p*(y) = p”(0) = 1 for every v € S, we have for every 0§ € S
PO,O (A \ An) = P0,9 (érgj =, grjn > xn)
= PO,@ (PQ@ n (57_-&- B > T, — fL‘) 757_;_ = ZZ’)
e
=Poy [(1 —p (T — :L’)) ]l{§7+=~’0}]

— 0, asn— +oo.

Since Pog (A, \ A) —Pog (A\ A,) =Poo(A,) —Poy(A) = p(z,) — pP(x) — 0 as n — +o0,
we have
(2.22) Poo (AAA,) =Pog (A \A)+Pog(A\A,) =0 asn— +oo.
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Note that by (2.19) and (2.20)

Pog [g(n;;, O Ont v — & & — ) Lpe =mn}}
— Py [Q(ng’ O+ ,0 4,0 =&+ v — x)]l{g;:w}} ‘
= [Pog [9(@@;’ Ort @0 = &ty &rt, — T e :xn}}
— Pgy [9((97;7 O+ =&+, + — f)]l{gi:x}}
< ||Poys [Q(TL, O+ ,0. 4 T — & & — Tn) (1{% —on} — ﬂ{sffx})] ‘

+ ”Po,e [(9(%}2, ©,4+.0. 4,0, =& Er — 1) = 9(7,0,4,0 4,0 — €+, €+ — w)) Ly +:x}] ‘
< [lgllocPo,p (AAA,)

+Pog (|97, 0 O 0 — €y € — ) — 9T 0,5, 0,1, — £, 6 — )]

We have 77 | 7;f Pgg-a.s. by the upwards regularity of (£,©) and hence (97; ,{ﬁ) —

(©,+,&,+) Pog-a.s. by the right continuity of (¢,0). In view of this and (2.22), (2.21) follows
by letting n — 400 in the above inequality.

By (2.19) and (2.20), we have for every x > 0 and every nonnegative measurable function
f:8xS xR xRt — RT,

PO,@ |:f<@q—;'_7 (H)T:jﬁ T — é‘q—;’—’ 57—;" - x>]1{§7_;r:at}i| = P0,9 |:f(®7—;'7 @7—;"7 07 O>]1{§T;r:a7}i|

= / f(’U,U, 0, O)PO,H (@T;r € dv’é‘j = gj) .
S

In view of this and Proposition 2.8, we can set the density function u, (dv,z) of U, (dv,dx)
to be #@Pw (0,4 €dv, &+ =) for every x > 0, in which case, z — a™(v)uy (dv,x) =
Poy (@T; €dv,§ + = x) is right continuous on (0,+0c0) in the sense of vague convergence,
because 2 +— Pog [(O,+); €.+ = x] is right continuous on (0, 400) for every bounded con-
tinuous function h : § — R. O

2.3. Long time behavior of MAP. 1t is well-known that for any R-valued Lévy process x
one has x;/t — Eyx; almost surely whenever Ex; is well-defined. Its proof relies on the
classical strong law of large numbers. Following this, a Lévy process exhibits exactly one of
the following behaviors: limy_, o x; = +00 a.s., limy_, ;o x; = —00 a.s. and limsup,_, . X =
—liminf, ,; x¢ = +o0 a.s. according as Eyx; >, <, = 0. This basic trichotomy is also true
for the MAPs where (0;);>0 is a positive recurrent Markov process on a countable state space.
We refer to 3] and the references therein. In such case, let 79(i) := 0 and {7,,(i) : n > 1}
denote the renewal sequence of successive return times to each state i € S. Then for each 1,
{&..i) : m > 0} constitutes an ordinary random walk. In fact, a law of large numbers can be
obtained by applying known results for these embedded random walks, but with considerable
additional analysis. Regarding the more general situation when the modulator © has an
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uncountably infinite state space, we note that a natural substitute for {7,,(i) : n > 1} is a
sequence of random times { R,, : n > 0}, in terms of which the process can be decomposed into
independent and stationary blocks. In order to construct such random times, we assume the
MAP satisfies the following Harris-type condition: There exist a constant 6 > 0, a probability
measure p on S and a family of measures {¢(0,-) : § € S} on R with infycs ¢(0,R) > 0 such
that

(HT) Poo (& €T, O5€ A) > 6(0.T)p(A) VeSS, AeB(S), T € BR).

This section aims at providing the trichotomy regarding the almost sure behavior of & as
t — +o0o when condition (HT) is satisfied.

Define My := 0, Sy := & and for any n > 1, define

Mn = ®n57 An = §n5 - f(n*1)5 and Sn = SO T Z Ak

k=1
It is easy to verify that ((S,, M,)n>0,P) is a discrete-time MAP satisfying
(2.23) Poo (A1 €T, My € A) > ¢(0,1')p(A)
forall 0 € S, A € B(S) and I' € B(R). In particular we have
Poog (M, € A) > ep(A) VYOS, AeB(S),

where € := infges ¢(0,R) > 0. This implies that {M,, : n > 0} is an irreducible and strongly
aperiodic Harris recurrent chain on S. Given this and (2.23), it follows by [28, 29] that there
exists a sequence of regeneration times 0 < Ry < Ry < -+ < oo such that {R,,,1—R,, : n >
0} is a sequence of independent and identically distributed nonnegative random variables,
and that the random blocks {Mg,, -, Mg, ,—1,Ag,+1, -+ ,Ag,,, } are independent with

P()ﬁ [MRn €A | an—17Aan| = p(A) VA € B(S},
where Gy, denotes the o-field generated by { My, -+, My, Ay, -+, Ap}.

We assume that (©;):>¢ has an invariant distribution . By [4, Theorem 3.2] 7 is uniquely
determined by

R1—1
1
2.24 A)= —P Teus, VA € B(S
( ) 7T< ) PO,p[Rl] 0,p []ZO {M;eA} ( )
where 0 < Py ,[R1] < +00. It follows that
+oo
Po.[S1] = L Z/P [Sjt1—S; | M; =0]Py, (M; €db, j < Ry — 1)
0,m [P1 Po,p[Rﬂ po s 0,p [Fj+1 J J 0,p J y J > 44U
1 Ri—1
= mPom ; (Sj41—55)

1
2.25 = 5—57P0,[R],
( ) PO,p[Rl} 07P[ R]
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whenever Py [|S1]] < +oc0. The regeneration structure implies that (Sg,,, — Sg,) is inde-
pendent of {Si, k < R, }, and its distribution is independent of n. Let N,, := sup{k: Ry <
n}. We can write

Sn = SRQ/\TL + [(SRl - SRO) + e+ (SRNn - SRNn—l):| + (Sn - SRNn) .

It is easy to see that Sgyan/n — 0 almost surely since Ry is finite and lim, ;o Spoan =
Sk, < 400 almost surely. Note that (Sg, — Sgry)+- -+ (Sry, — Sky, ) s a random sum of
i.i.d summands. In view of (2.25), we have by the standard LLN and the elementary renewal
theory that

(SRI - SRO) +oeet (SRNn - SRNnA)

lim
n—+00 n
. (SRI _SRO)+...+ (SRNn _SRNnﬂ) Nn
= lim .
n—-+o0o Nn n
1
= Py, [Sr,]" Py 7] =Py [S1] Pog-as.

Moreover one can easily show by Borel-Cantelli lemma that (Sn ) RN") /n— 0 Pgg-as. if
Py, [max;<i<p, |Sk|] < +00. We have hence proved the following lemma.

LEMMA 2.3.  IfPy, [maxi<k<g, |Sk|] < 400, then S, /n — Pg -[S1] Pog-a.s. for everyd € S.

LEMMA 2.4. IfPg, [SUPse[o,t] |&s]] is finite for some t > 0, then it is finite for all t > 0 and
Pox [SUDsepoe) |§S|] is finite for all ¢ > 0.

PROOF. In this proof we use [[{]|; to denote supyeoy |€s]- Let f(t) := Po [[[]]:] for ¢ > 0.
We observe that for any ¢,r > 0,

SE[t,t+r] SE[t,t+7]

(2.26) [1€l[e4r < llE]l v ( sup [€; — & + |§t|> < |l€lle+ sup & —&l.

By the Markov property and translation invariance in &, we have

PO,ﬂ'

sup [€s — ft\] =Por [Poe, [[El] = Pox [llE]l] = F(r).

sE[t,t+7]

The second equality is because 7 is an invariant distribution of (©;):>o. Hence by (2.26) we
get f(t+7r) < f(t)+ f(r). Given that f(¢) is finite for some ¢ > 0, f is a nonnegative locally
bounded subadditive function on [0, +00). Hence there exist some constants b,¢ > 0 such
that f(¢) < ct + b for all ¢ > 0. Consequently, Po . [|[£]|e,] = 0+°° qe” T f(t)dt < 400 for all
q > 0. O
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PROPOSITION 2.10.  Suppose ((€,0),P) is a MAP satisfying (HT) and w is an invariant
distribution for (O4)i>o. If

(2.27) Por | sup |&]| < +oo

s€[0,1]

then &/t — Po x[&1] Pog-a.s. for every 6 € S.

PROOF. Without loss of generality we may and do assume that (HT') holds for § = 1. This
proof works through for any § > 0 with minor modifications. By Lemma 2.4, condition (2.27)
implies that Po . [sup,coq[&sl] < +oo for all £ > 0 and Po[|A]] = Pox[|&]] < 400. We
have

Ri1—1

> 144
=0

+o0o
= Z/Po,pﬂﬁjm | Mj = 0]Po, (M; €db,j < R —1)
j=0 7%

R1—1
Z ﬂ{Mjede}]

J=0

1<k<R;

P07p |: max ‘Sk’:| < PO,p

_ / Py [|A]]Po,
S
(2.28) = Po,[R1]Pox[|A1]] < 400,

where in the last equality we use (2.24). It follows by Lemma 2.3 that S, /n — Py ,[S1] =
Po.x[&1] Pog-a.s. for every 6§ € S. Note that for any ¢ € [Rg, Ri41),
Sr, Rk B SUDse[Ry, Rips1] |§s - SRk| é
Ry Ritq Ry t

SRk SupSE[Rk,R;H,l] |§5 - SRk|
Ry, Ry, '

< =<
It is known by the renewal theorem that Ry/k — Pg ,[R1] Pog-a.s. Hence to prove &/t —
Po.r [&1] Pog-a.s., it suffices to prove that

SupsE[Rk,Rk+1] ‘55 - SRk|

(2.29) -

—0 ask— +oo Pygp-as.

for every ¢ € S. The regeneration structure implies that {sup,cip, g,.,) |6 — Sr,| : & >
1} under Py is a family of i.i.d. random variables which have the same distribution as
(SUPse[o, Ri] &5],Po,,). Hence by the second Borel-Cantelli lemma, (2.29) holds if and only if

sup [&|| < 4o0.

SE[O,R1]

(2.30) Po,

We note that

su < max |5+ max su — Sil.
SE[O%} €] _ogkgRlﬂ‘ d 0§k§R1flse[k7]£_1} & d
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Applying similar calculation as in (2.28) we can deduce that

Ri—1
P max sup |& — S < Py sup |& — S,
0 0Sk<Ri—1 ek k+1] | k|] 00 o SElkk+1] | #
= Py, [Ri]Por | sup |&|| < +oo.
s€[0,1]
Hence (2.30) follows from this and (2.28), completing the proof. O

PROPOSITION 2.11.  Suppose the conditions of Proposition 2.10 hold. Then we have (a’)
& — 400, (b)) limsup,_,, o & = 400, liminf, , & = —o0 and (¢’) & — —oo Pyg-a.s. for
every 0 € S according as (a) Po[&1] > 0, (b) Po.[&1] = 0 and the increment distribution in
each block is not concentrated at 0 and (¢) P[] < 0.

PROOF. It is immediate from Proposition 2.10 that (a)=-(a’) and (c)=-(c’). In case (b), we
consider the sequence {Sg, : kK > 0} which is a discrete-time random walk with mean 0
and the increment distribution not concentrated at 0. Hence limsup,_,, ., Sr, = +oo and
liminfg, 4 Sk, = —oo which implies (b’). O

REMARK 2.12. Let us make a brief remark on the condition (HT). This condition is of
course not the most general condition under which the results of Propositions 2.10 and 2.11
hold. We believe an extension is possible, at least to some extent. One direction is to assume
Harris recurrence of (M,,),>0 alone. However, in this way, instead of having i.i.d increments,
{Sg, : n > 0} has 1-dependent and stationary increments. Therefore in all places where we
apply results for ordinary random walks, extensions to the case of 1-dependent and stationary
increments are needed. Since this can not be done shortly, we have restricted this section to
the case when condition (HT) is satisfied.

Hereafter we say that & drifts to +o0o, oscillates or drifts to —oo at 6, respectively, if
limy_, 4o & = +o0, limsup,_,, . §& = — liminf, |  § = +oo or limy_, o §& = —00 Pyg-a.s.

PROPOSITION 2.13.  For every 6 € S,

0 if & oscillates or drifts to 400 at 6,
| mie = ooty v, dz) -
SxRF 1 if & drifts to —oo at 6.

PROOF. Let g, denote the last time when &; attains its running maximum. If & oscillates
or drifts to +o00 at 6, then Py (g = +00) = 1. By Proposition 2.3 we have
(2.31)

Pog [e 4] = / e M (gl (v) + 0 (1—e7%)) V' (dr,dv,dz) VA, g > 0.
Rt xSxR+
Letting ¢ — 0+, we get by Fatou’s lemma that

0=Po ] > [ eurC = ooV drdnde)

RtxSxRt
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Then by letting A — 0+, we get by the monotone convergence theorem that
/ 0 (¢ = +o0) Uy (dv, dz) = 0.
SRt

On the other hand, if & drifts to —oo at 6, then Py (g0 < +00) = 1. Note that for any
0 < g < A/2, the integrand in the right-hand side of (2.31) is bounded from above by
e (30+(v) +nf (1 —e /%)) and

/ e M (éﬁ(v) +n; (1 — e‘AC/Q)) V, 5 (dr, dv,dz) = Pgy [efégew} < +o00.
R+txSxR+t 2

Hence by letting ¢ — 0+ in (2.31) and using the dominated convergence theorem in the
right-hand side and the monotone convergence theorem in the left hand side we get

Pug o] = [ eug(c = o)V du. )
Rt xSxR+
Letting A — 0+, we have
/ 0H(C = +o0)Us (dv, d2) = Pog (gae < +00) = 1.
SxR+

which completes the proof. O]
2.4. Invariant measures.

PROPOSITION 2.14.  Suppose ((£,0),P) is a MAP on R xS and v is an invariant measure
for the modulator ©. Then the measure

(2.32) vt() =Py, Uol ﬂ{ese.}dLs]

is an invariant measure for the modulator ©F of the ascending ladder height process ((£*,07),P).
Moreover, vt is finite if and only if Py, [Ll] < +00.

PROOF. It suffices to show that

+oo
(2.33) /0 e Py, [f(OF)] ds = 1 /S F(O)F(dO)

«

for any o > 0 and nonnegative measurable function f : & — R*. The left integral is equal
to

Py, { / - ea3f<@:>ds] ~ Py { / ” eaLsf<@s)dEs]
0 0

1 +o0 _
2.34 = Py, P —obs 1(Q)dLs| dL, | .
(2.34) . [/ @U el £(6,) } }
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Recall that s +— L, is an additive functional of (6, &, — & )i>0. Hence the law of (Ly, ©;)>0
under P,y does not depend on x. The right hand side of (2.34) is equal to

o o L
Py, / P¢ 0. { / e ls f(@s)dLs} dLr}
LJO 0

r rl 3 +o0 o B
~ Py, / dL, / e~(Es ) f(@s)dLs]
LJO r
+o0

r _ 1As _ B
= Py, / dLse "L f(O,) / eaLTdLr]
0 0

—+00

- [Po,y { /0 ool f(o,) (e — 1) dLs] +Po, { /1 e ke f(0,) (e 1) dLsH
-2 [Po,y { / 1 f(@s>dLs} Py, { / ” eaLsf<@s>dLs}
(2.35) +Po, { /1 +Oo el ¢ (@s)disH

In the first equality we use the Markov property and the additivity of L,. Using these facts
again we have

PO,V |:/+OO ea(LSLl)f(@s)dEs:| = PO,V Pfl,@l |:/+OO e_aer((ar)dI_/T]]
1 0

+o0 _ _
= Po, |Poe, {/ eO‘L’“f(@r)dLrH
0

+o0 _
(2.36) = Py, / e—olr f(@r)dir].
0

In the last equality we use the fact that Py, (©; € -) = v(+). In view of (2.36), the right hand
side of (2.35) equals

1 ! . 1
lp,, [ / f(@s>dLs] — = [ s an)
Hence we get (2.33). O

COROLLARY 2.15.  Suppose the modulator © of ((£,0),P) has an invariant distribution .
If Py [L1] > 0 and infges [(T(0) + ng (1 —e™¢)] > 0, then the measure 7 defined by

1 ! _
() = ———==Pyr 1 ad L
w0 = oo ] vt

is an invariant distribution for the modulator ©F of ((¢1,07),P).
PROOF. By Proposition 2.14, it suffices to show that P . [f/l} < 400. Let
c:=inf [(*(0) +nj (1 —e )] € (0, +00).

0es
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By (2.3) and (2.4) we have

1
Po’ﬂ— [El] S %PO,W [/ €+<@s) + ngs (1 - e_c) dLs:|
0

1 ! e
E P()Jr |:/0 ]]-{seM}dS:| +P0’7T Z (]_ —¢c ¢t ))

B 9:€G,gi<1

<

1+Por | > (LACH)

gi€G,g;<1

1
c

We note that among all the excursions that start in the time interval [0, 1], there is, at most,
one excursion having a lifetime longer than 1, and the sum of lifetimes of other excursions

does not exceed 1. Hence Py . [Zgieé,gigl (1 A C(gi))] < 2 and Py, [El] < 400. n

3. Duality. In this section we present the notion of duality as well as several results about
duality. Here we suppose that E is a Polish space and p is a o-finite Radon measure on
E. Suppose that (X,P) and (X' , Q) are two, possibly killed, right continuous strong Markov
processes having left limits in E except perhaps at their lifetime. We use ¢ and é respectively
to denote their lifetimes. We take the convention that 0— = 0.

DEFINITION 3.1.  Two processes Markov processes (X, P) and (X, Q) are dual with respect
to p if for every bounded measurable functions f, g : E — R and every ¢t > 0,

/E u(de)g(2)Ba (X)), £ < ] = / u(de) £ (2)Qulg (%), t < ().

E

Note that there is no requirement that p is a finite measure. The notion of duality is closely
linked with reversibility. The following result is from [31, Theorem 2.1].

LEMMA 3.1.  Suppose that (X,P) and (X,@) are dual with respect to u, then,

/Eu(dx)IP’gg [F ((Xo)s<t) Lpp<gy] = /Eﬂ(dﬁ)@z [F <(X(t—s)—>s§t> ﬂ{t<§}}

for every t > 0 and nonnegative functional F : Dg[0,t] — RT.

Finally, we present a result on the time reversal from the lifetime which can be found in |13,
Theorem 13.34].

LEMMA 3.2.  Suppose that (X,P) and (X, Q) are dual with respect to . If the process X
has initial distribution n and a finite lifetime ¢ such that

(31) [ wansw) = [ wane. | [ Cf(Xt)dt]

for every nonnegative measurable function f : E — R, then ((X(C,t),)kt«,ﬂ”n) 1S a right
continuous strong Markov process having the same transition rates as (X, Q).
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We remark here that in general the measure 1 appearing in (3.1) may not exist. If exists, it
is uniquely determined by the reference measure p, see, for example, |20, Theorem 2.12 and
Section 6].

Throughout the remainder of this paper, we assume the process ((¢, @),ﬁ) is a MAP with

P,., (& =vy,00 = v) =1 and is linked to ((§, ©),P) through the following weak reversability
property: There exists a probability measure 7 on § with full support such that

(WR) Pog(& € dz; O, € d¥)m(df) = Pyy(& € dz; O, € dd)x(dd)) Vit > 0.

By integrating (WR) over variable z, it follows that the Markov processes ((©;);>0, {Pos,0 €
S}) and ((©¢)t>0,{Poyg, 0 € S}) are dual with respect to the measure 7. Hereafter we denote
by ].A)xﬁ the law of (—¢, ©) under P_, 4. We will use the notation ~ to specify the mathematical

quantities related to the process ((¢, @),15). In the following we give some examples for a
MAP to be weakly reversible. Each example corresponds to a well-known class of ssMps via
Lamperti-Kiu transform.

EXAMPLE 3.1. Suppose & = {s1,--+,s,} is a finite set. It is known that the process
((¢,0),P) is a MAP on R x S if and only if ((©¢)t>0,{P.g : 0 € S}) is a (possibly killed)
Markov chain on & whose law does not depend on z, and for each s;,s; € & there exist
a (non-killed) Lévy process &/ and an R-valued random variable =, such that when © is
in state s;, £ evolves according to an independent copy of &, and when © changes from
s; to another state s, £ has an additional jump which is an independent copy of =;; and
until the next jump of O, £ evolves according to an independent copy of ¢*, and so on, until
the lifetime of ©. For such a MAP condition (WR) is equivalent to require that there is a

MAP ((¢, @),15) on R x § and a probability measure 7 on S such that m; = 7({s;}) > 0 for
1 <j<nand

(3.2) 7@-130,8]. (€210, 53] = MPos, [€1(0,2s;3] V>0, AER, 1 < j,k <n.

We let (¢jr)1<jk<n denote the intensity matrix of the Markov chain ©, 1;(\) denote the
characteristic exponent of the Lévy process & and J;;(\) denote the characteristic function
of the random variable Z; ;. The matrix

F()) == diag(—=¢1(A), -+ s =¥n(N) + (6 Sjn (M) 1jpcn VA ER
is called the characteristic matrix exponent of the MAP ((¢,0),P) because
Pos, [e™ 1{e,msy] = ("), V20, 1<)k <n.
Equation (3.2), in terms of the characteristic matrix exponent, is equivalent to
F\) =A'FO)TA, VAeR,

where A, = diag(my,--- ,m,). Condition (WR) is satisfied, in particular, if the process © is
dual with itself with respect to a probability measure 7 and =, 4 Zg,j forall 1 < j,k <n,
in which case we can take P = P.
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EXAMPLE 3.2. Suppose O is an isolated extra state and the transition probabilities of
((£,0),P) have the following form:

P.y (6 € dy. ©: € dv) = e P (¢ € dy) P (6] € dv).
PL@ ((51?7 ®t) = 8) =1 e*)‘t

for all t > 0 and (z,0) € R x S, where A > 0 is a constant, (¢/, P§) is a non-killed R-valued
Lévy process started from z and (6',P§’) is a non-killed S-valued Markov process started
from 6. Then condition (WR) is satisfied if and only if there exists an S-valued Markov

process ((0))=0, {P§,6 € S}), which is dual to ((6));20, {P",0 € S}) with respect to a
probability measure 7 on S. In this case, we can take the MAP ((£,©),P) to be such that
its transition probabilities have the following form:

{ﬁx,e (& € dy, ©, € dv) = e MPY (¢ € dy) PY' (0] € dv),
lsx,e ((£,0) =9)=1—eM

forallt > 0 and (z,0) e R x S.

EXAMPLE 3.3. Suppose S = S9! and for any orthogonal transformation O of S and
(z,0) € R x S¥71 ((£,0),P,4) is equal in law with ((5, O(@)),Px’o—l(g)). In view of this
property, if X is the ssMp associated with (£, ©) by Lamperti-Kiu transform, then X is a
rotationally invariant Markov process on R?. Hence its norm (|| X¢||);>0 is a positive ssMp,
which in turn implies that £ alone is a Lévy process. In this case condition (WR) is satisfied

withP =P and 7 being the uniform measure on the sphere S*!. We refer to |1, Proposition
3.2] for a proof.

PROPOSITION 3.2.  The processes ((£,0),P) and ((¢,0),P) are dual with respect to the
measure Leb ® 7, where Leb is the Lebesque measure on R.

PROOF. Suppose f, g : RxS — R are nonnegative measurable functions. By an application
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of Fubini’s theorem, a change of variable and condition (WR) we get

‘4Smmeﬂxm 196 0]

dzm(d8) f(z, 0)Pog [g(z + &, O]

dym(d0)Pog [f(y — & 0)g(y, Or)]

dyn(do) Poo (& €dz,0, € dv) f(y — 2,0)9(y, v)

xS RxS

- / dyﬂ'(dy)/ Py, (& € dz,0, € d9) f(y — 2, 0)g(y, v)
RxS RxS
/R dyr(dv)g(y, I/)]-So,u f(y — &, 0y)]

A dyr(dv)g(y, v)Po, [f(y + &, ©4,)]

= /R . dym(dv)g(y, v)Py., [f(&, ©)]

for all t > 0. Hence we complete the proof. O

LEMMA 3.3.  Suppose t > 0. For every x € R, the process (§—s)— — &, O—s)— )o<s<t under
P, . has the same law as (&5, O)o<s<t under P ..

PROOF. In order to prove this lemma it suffices to consider the finite dimensional distribu-
tions. Let n > 1 be a fixed integer. For 0 < k < n we take nonnegative measurable functions
fr : SXR—=Rrand0=ty<t; <ty <---<t, <tp =t Let g: R— RT be a non-
negative measurable function. We know by Proposition 3.2 and Lemma 3.1 that the process
((g(t,s),, @(t,s),)ogsgt,P) has the same law as ((58, @S)Ogsgt,ls> both started according to
the measure Leb ® 7. Using this and the quasi-left continuity of &, we have

/R SdﬂT(dQ) ( ) z,0 [fo( (t— to)—aft to)— gt) fn(@(t—tn)—ag(t—tn)— _ft)}

/ dxﬂ' 339 [fo( (t— to)—aft to)— _§t ) f (@(t—tn)—aft tn)— _§t ) (ft tn+1)—)}

XS

S

/’dm Poo [fo(Orn: €0 — &) fu(On G — €0)9(E0ri)]

X

=
%)

/ dl‘ﬂ' dé P09 [fO(Gtovgto) fn(@tnv ftn>g<€tn+1 + l‘)]

xS

=

I
o>

0.7 [f()(@tmgto) : "fn(@tnaftn)/Rg(&nH +I)dx}
/ dl‘ﬂ' de )130,9 [f0(®t07 £t0) U fn(@tnv gtn)] )
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where the last equality is obtained by Fubini’s theorem and a change of variable. Since g is
arbitrary, it follows by above equations that {(&s,©0;),0 < s <t} under Py, has the same
law as {({4—s)— — &, On—s)—),0 < s < t} under P, . for almost every x € R. We observe that
the law of the latter does not depend on x, thus the claim holds for every x € R. O

The upwards regularity of ((£, ©),P) implies that almost surely the local maxima of £ during
a finite time interval are all distinct. In view of this and Lemma 3.3, we have the following
result.

PROPOSITION 3.3.  For every t > 0, (@o,t —§1,0., & — &, Gt @t,ét) under f’o,ﬂ s equal in
distribution to (@t, Ji,00,&,t — G4, 04, & — ft) under Py .

4. MAP conditioned to stay negative. In this section we assume that ((£,©),P) is an
upwards regular MAP. Define

Hj (y) =Py (7 =+00), V(y,0) eRxS.
Obviously f[;(y) =0 for all y > 0.
PROPOSITION 4.1.  Assume that
(4.1) i (¢ = 400) > 0 for every v € S,

then

i) Hi (y) >0 foralld € S and y <0, and
(1) Hy (y Y
(1) HE, (&) L<rty is a Pyg-martingale for every y <0 and § € S.

PROOF. (i) For y <0 and 0 € S,
Hy (y) = Pog (ij = +00) = ql_i)r& Poy (ij > ¢q) .

It follows by Proposition 2.3 that
130,0 (ij > €q) = f’o,a (geq < —y)

— / e "< yy (q@*(v) +4; (1- ew()) vt (dr, do, dz).
R+t xSxR+

Hence by condition (4.1) and Fatou’s lemma,

() > / (¢ = +o0)0f (dv, dz) > 0.
SX[Ov_y]

(ii) By the Markov property of ((¢, @),15), we have for any y < 0 and 6 € S,

[pét,et (TO+ = +OO) 1{t<7-0+}}
(ro" = +00) = H7 (y)-

Pyo [H(i)rt(gt)]l{t«gf}] = Py
P,y
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Using this and the Markov property of ((¢,©),P) we prove that {]:Ié“t (ft)l{t<T0+} 1t >0} is

a f’—martingale. O]

Under the conditions of Proposition 4.1 we can define probability measures 15;9 on the
Skorokhod space Dgys by

A ~
dP HZ

) A@;—(&)HK#} Vy <0, 0S8, t>0.
dPy,G P HH (y) 0

t

It follows by the theory of Doob’s h-transform that for every y < 0 and # € S the process
((¢, @),15;9) is a strong Markov process on the state space (0,+o00) X & with semigroup

~

(Pf)tzo given by

Pz w) = P, [ﬁgﬁ ) f (& @t)1{t<70+}] Vz<0,0€S,t>0.

1
Hy (2)
Since ]:Igt (&)1, <rfyisa P-martingale, the semigroup (P})i=0 is Markovian and accordingly

the process ((&, @),lsi) has an infinite lifetime .
PROPOSITION 4.2.  Suppose that (4.1) holds. For ally < 0,0 € S,t>0 and A € F,,
/\\L . ~
P,o(A)= qli>r(1)1+ P,o (A,t <eg|m > eq) .
PROOF. Note that by the Markov property of ((¢,©), f’),
Poo(At<e,<7f) = / qe Py o(A; s < 75 )ds
t

400 R
= / qe_‘Z(SH)Py’g(A; s+t <T1y)ds
0

= eithy’e <1{A,t<TS_}P£t:@t (7—0+ > eq)> .

Thus by the bounded convergence theorem,

. ~ P e (T+ > e )
lim P, (A, t < s — lim e P, (1 £.9:070 7
. ol yve( ) eq| 0 eq) . am e Y0 ( {At<ri) P,y > e)
- ﬁ+ (ft) ~ |
= Py —2 ] aterfy | = Pyo(A).
( Héi-(y) {At<i} Y,

The process ((&, @),I:’i) is referred to as the MAP conditioned to stay negative.
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PROPOSITION 4.3. Suppose that (4.1) holds. For every 6 € S, there exists a probability
measure 1539 on Drys satisfying that & = 0 and & # 0 for all t > 0, f’éve-a.s., and that the

process (&, ©y)i=0 under 15370 s a strong Markov process with the same transition rates as
((&,0), {13:9 cy < 0,0 € S}). Moreover we have

fif [Flyt(—et)f(—éwt)ﬂ{t«}]
iy (¢ = +o0)

for any t > 0 and nonnegative measurable function f : R x S — RT.

(4.2) lsé,e [£(&,00)Lu<qy] =

PROOF. To construct f’éﬁ we use the transition kernels %7 defined in [23] (see also the
arguments in Section 2.2.1). Recall that R = inf{t > 0 : ¢ € M} and that under PO the
process (O, &, Up)i>o starts from (0, z, u) and (04, &, U)o is a strong Markov process having
the same transition rates as ((©y, &, Ut)tzo,lsx,g). Note that H (y) = lim,_o, lf’yﬂ (1o > eq)
for y < 0 and 6 € S. It follows from the Markov property and the bouned convergence
theorem that

B0 (A 0 tem] =l 3 [P (5 > ) Vo]
_ : qtev0,0,0 >
fg, "t <o < )
_ qli%1+ﬁ; (t <e, <)

Thus we can define a probability measure lsé’(, on Dgys by

5t 1 116,00 [ 7
43 Pl (A) = P00 [F (g1 —11] VAEF, t>0.
( ) 0,0( ) ﬁ;—(g — +OO>§B O (525) {t<R} A t
One can easily show from the properties of €i39’0’0 that under ls(iw the process &; leaves 0
instantaneously and never hits 0 again, and that the process (&, ©;);>0 is a Markov process

whose transition rates satisfy
Al ~
PO,@ [£t+5 G A, @t+s 6 B | 55, @5] — PE.m@s [ft 6 A, @t G B]

for all t,s > 0, A € B(R) and B € B(S). Note that, by definition, under BO0O U, equals —&,
for t < R. Hence by (4.3) for every ¢ > 0 and nonnegative measurable function f: R x S —
R*, we have

N 1 A A
Poo [f(&. 0] = m‘ﬁe’o’o [H&(—Ut)f(—Ut,@t)ﬂ{mﬂ
1 A
— iy B () [~ )Ly |
ﬁg((’:+oo)n9 [ (=€) f (=€, 1) Ly
In the second equality we use the fact that 1 is the image measure of (U, ©,);.p under

;30,0,0' []
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REMARK 4.4. Suppose § = {s1,82,---,s,} is a finite space and ((£,0),P) is a MAP taking
values in R x §. For simplicity we assume the random variables =; ;. introduced in Example 3.1 are

such that = g Eg,; for all 1 < j,k < n. Suppose the process (0, {P,4,6 € S}) is irreducible and
hence ergodic. Its invariant distribution is denoted by m = (71,79, -+ , 7). In this case condition
(WR) is satisfied by taking f’O,v to be Pg,. Hence 15071, is the law of (—¢,0) under Pg,. Let
qgj(q) = ﬁj(l —e %) for 1 <j <nandq>0. It is proved in [16] that

di@) _ B ((=Ho0)+AT(1—eT ¢ <+o0) m
>0+ dy(q) -0+ iy (C = +o0) + if (1 — =9, < +00) T

It follows that if F(¢ = 4+0o0) > 0 for some (then for all) 1 < j < n, then there is a constant ¢ > 0

independent of j such that 1 T(¢ = +00) = ;. Since Pwi (70 = +oo) = limg—0+ PO@. (feq < y),
we get by Proposition 2.3 and the bounded convergence theorem that

f’y,si (7'6" = —|—oo) = CZ UZ+(_
=1

2 2 Lo . 2 . .
where U;jf(—y) =Py [fo 1{£j§fy,®j=s]~}dt}' In [16], >0, UJ(—y)Wj is used as the harmonic
function to define a martingale change of measure under which the MAP is conditioned to stay
negative.

REMARK 4.5. Suppose ((£,0),P) is a MAP where £ is a (possibly killed) Lévy process on R
whose law is independent of © and O has an invariant distribution. In this case condition (WR) is
satisfied by taking PO v = Po, and hence PO v is the law of (—¢, ©) under Pg,. We assume that for
&, 0 is regular for both (—o0,0) and (0 —|—oo) in which case, both ((£,0),P) and ((—¢,0),P) are
upwards regular. We claim that (4.1) is satisfied if and only if the Lévy process & drifts to +oo.
To see the this, we first recall some known facts about Lévy processes. Let L, be the local time of
¢ at the running minima and n~ be the excursion measures at the minimum. In fact, n= equals
" which is the excursion measure at the maximum of the dual process —&. Since 0 is regular for
(—00,0), there is a continuous version of L, and a strictly positive constant [~ such that almost
surely fot ]]'{5S:infre[0,s] ¢1ds =17 L, for all t > 0. In this case, the inverse local time L;l is a (killed)
subordinator with Laplace exponent given by ®(¢) = [7¢ +n~ (1 — e~ %). It follows that L__ is
exponentially distributed with parameter n~({ = +00). Hence n™ (¢ = +o00) > 0 if and only if &
drifts to 400, in which case [11] showed further that n(¢) = IT +n* (1 —e™¢) < +o00 where n*
denotes the excursion measure at the maximum of £ and [T is the drift coefficient for the inverse
local time at the maximum.

5. Stationary overshoots and undershoots of MAP. Throughout this section we will
assume that the modulator of ((£,0),P)

(5.1) © is positive recurrent with invariant distribution 7 which is fully supported on S.

DEFINITION 5.1. For ¢ > 0, let {T(q) :n > 0} be a sequence of random variables such that
T( 9 = 0 and {TTE‘_’H — T > 0} are independent and exponentially distributed random
variables with mean 1/¢. Define

Myt = @;m)
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We call M@+ = {MT(LQ’)’Jr :n > 0} the g-embedded chain of the process (0 );>0. Moreover,
in the spirit of [27], we say that ©F is a (nonarithmetic aperiodic) Harris recurrent process
if ©F has a (nonarithmetic aperiodic) Harris recurrent g-embedded chain for some ¢ > 0.

Under the preceding assumption (5.1), together with the assumption that

(5.2) infs [T (v) +nf (1 —e)] >0 and n; (¢) < +oo0 for every v € S,
ve

it follows by Corollary 2.15 that

(5.3) () = PQW;MPOJ {/01 ]1{956‘}(:1[_/5}

is an invariant distribution for © and hence for M(9-*. It follows by [24, Theorem (5.1)]
that

(o) = {K*(v)w*(dv) + / nt ( /0 C 11{,,t€dv}dt> w+(d9)]

Cr+ S

where ¢+ := [ [¢7(0) + ng (¢)] #7(df) is a positive constant.

LEMMA 5.1.  Assume that (5.1) and (5.2) hold and, further, that Py + [&] < oo where
7wt given in (5.3) is fully supported on S. Suppose that the continuous part of £ can be
represented by fg at(©F)ds for some strictly positive measurable function a™ on S. Then for
all ¢ > 0, we have

i [0+ [ T o)y = aPo 5] <.

where TI5 (y) = IT*(6,.S, (y, +00)).

PROOF. Using that Pg .+ [ffr] < 400 and the subadditivity of ¢t — Pg .+ [fﬂ , one can show
in the same way as in the proof of Lemma 2.4 that P .+ [{ﬂ < 400 for all ¢ > 0 and

Por+ [5;;] < 400 for all ¢ > 0. We note that for every ¢ > 0,

t
& :/0 a® (07 )ds + Z AL T aet oy

0<s<t

where AL = &F — ¢ By Proposition 2.5 and Fubini’s theorem, we have

Poyg

t

0<s<t

(5.4) — Py [ /0 s /0 +Oo ﬁgj(z)dz}
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for every § € S. Hence

= [ /0 s (a+<@:)+ /0 +mﬁgj(z)dz)]

_ t( /S at (o)t (do) + /S . ﬁ;(z)w(d(p)dz)

= tut.

In the second equality we use the fact that 7% is an invariant distribution for ©%. Conse-

quently we have
+

+oo
P+ [5+] —q / ¢ Py [6] dt = %
0
O

Under the assumptions of Lemma 5.1, the measure p° given below is a probability measure
on Rt x S,

1

(5.5) p°(dz,dv) = s {a+(v)7r+(dv)50(dz) + IL{Z>0}/ 71 (dg)dy 1T (¢, dv,dz +y)| .
SXRT

We will show in the following that p® is the stationary distribution for the overshoots of the

MAP, assuming additionally that,

(5.6)  the ssMp underlying ((£, ©),P) via Lamperti-Kiu transform is a Feller process,

and the modulator

(5.7) O of ((¢7,07),P) is a nonarithmetic aperiodic Harris recurrent process.

The key of the proof is the application of Markov renewal theory developed in [2]. Suppose
that {]\LS,QLJr = @;(q) : n > 0} is a nonarithmetic aperiodic Harris recurrent g-embedded

chain of ((£T, @*),f)). Define

SO+ m gt NGO = I im0

n T ﬂy” n

One can easily show that (M, S97), <o and (M{PF, N\9T), <0 both are Markov renewal

processes in the sense of [2]. We shall first consider the process (MT(Lq)’JF, 51(;1)#)”20‘ For every

0eS,let
+oo
(5.8) Fy(dv,dz) := P079<M1(q),+ € dv,S’fq)’Jr €dz) = / ge "Poy (0] € dv, &' € dz) dt.
0

Let F;%(dv,dz) := dg(dv)dg(dz) and F;™ be the n-th convolution of Fy for n > 1. Then

o8 F;(dv,dz) is the renewal measure of Markov renewal process (M,Eq“, Séq)’+)n20. Note

that Py .+ [qu)ﬂr] =P+ [5;:} = u"/q. Given (5.7), it follows by [2, Theorem 2.1] that

+o0o
. *M q
(5.9) lim g(v,y — 2) E F;"(dv,dz) = N_+/s g(v, 2)mt (dv)dz
n=0

e Jsx(oy] xR
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for every 6 € S and every measurable function g : S x RT — R satisfying the following two
conditions:

() for each v € S, the set of discontinuous points of z — ¢(v, z) has zero Lebesgue measure;
(ii) [¢>o02 Osupz6 i, (n1)p) 19(V; 2) |77 (dv) < +oo for some p > 0.

We use M to denote the space of measurable functions satisfying both of the above condi-

tions. In view of the fact that Pgg ( € dt> = % t ol e~adt for n > 1, we have

—+o00
U;(dv,dz) = / Py (@zr edv, & € dz) dt
0
+o0 +o00 n—1
t
= Z/ eqt%Pw (0] € dv, & €dz)dt
(n—1)!

= —ZPOQ q>+€dv Sq)+6dz)

1
q

ZF (dv,dz) — 59(dv)50(dz)] :
This and (5.9) imply that for every € S and every g € M,

1
(5.10) lim g(v,y — 2)U, (dv,dz) = —+/ g(v, 2)7 " (dv)dz.
H SxR+

Yoo Jsxoy)

REMARK 5.2. It is easy to see that g € M if, in particular, z — g¢(v, 2z) is right continuous on
[0,+00) and there is a measurable function f : & x Rt — RT such that |g(v, z)| < f(v,z) for all
(v,2) € § xR, z = f(v,2) is a monotone function on R and [q g+ f(v,2)7"(dv)dz < +00. In
fact this sufficient condition for g € M is easy to be verified and will be used later in our proofs
where the Markov renewal theory is applied.

PROPOSITION 5.3.  Suppose (5.6), (5.7) and the conditions in Lemma 5.1 hold. For every
0 € S, the joint probability measures on S x R~ x & x R

Pyy (@ij €dv,{+ —re€dy,0.+€dp,{+—1€ dz)

converges weakly to a probability measure p given by

1
p(dv,dy,d¢,dz) = M—+[ﬂ{y<oyz>0}£+(v)ﬂ(v,d¢, dz —y)rt (dv)dy

¢
+ﬂ-{y<0,z>0}dy/ 7T+(d90)n; (/ ]]-{esg—y,usedv}n(va d¢7 dz — y>d8>
S 0
+a*t (v)m (dv)do(dy)do(dz)d,(de)]
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as x — +oo. In particular, Py g (ij —r€dz, O+ € dgb) converges weakly to p®(dz,do)
gwen by (5.5), and Py g (fﬁf —redy, O+ € dv) converges weakly to a probability mea-
sure p®(dy, dv) given by

P ) = [t () (o) + Lo € (0T (—9)* (@)

¢ _
+1{y<0}dyéﬁ+(d¢)n$ (/ HU(_y):H'{Er<_y7VrEd'U}dT) }
0
Here I1,(—y) := (v, S, (—y, +0)).

PROOF. First we claim that p given above is a probability measure. Integrating p(dv, dy, d¢, dz)
over the variables v and y, we get that

L0 O @0)i(d2) + 1y [ (@oldy £ 000z +)

SxR+

¢ +oo
+1{z>0}/S7T+(d90)HZ (/ dS/ dy Lqy,cany[1(vs, do, dZ+y))]
0 €s

B ui {“(W*(d@%(dz) +1(0) / 7 (dv)dy £ (0)1(v, g, dz + )

SxRt

¢
+]]-{z>0} / 7T+(d90)du H; (/ ]]-{Vsédv}H(VS7 d¢7 dz + €s + u)):|
SxRt 0

= LJF {a+(¢)ﬂ+(d¢)5o(d2) + 150 / 7 (dv)dyllt (v, dg, dz + y)]
K SxR+
= p°(dz,dg).

The first equality follows from a change of variable and Fubini’s theorem, and the second
equality follows from Proposition 2.5. This implies that p is a probability measure and p®
is its marginal law. Similarly, by integrating p(dv, dy, d¢, dz) over the variables ¢ and z, we
can show that p® is also a marginal law of p. Next we prove the weak convergence. Suppose
f,g: S xR — R are bounded continuous functions. It follows by Proposition 2.7 that for
any x > 0,

Poo (10 s —0)9(O,5. 6 — )1 )]

Tge >T

= Uy (dv,dz) [(F(v) f(v, 2 — 2)G(v,z — z)

Sx10,z]
¢
(5.11) +n </ f(ys,z—:c—es)G(z/s,:c—z—l—es)ds)} :
0

where G(v,u) = f8><(u to0) g9(¢,y — u)ll(v,d¢,dy). One can easily show that the condition
given in Remark 5.2 is satisfied by the function

(v,2) = LT (v) f(v,—2)G(v, 2) + nF (/0C flvs, —2 — €)G(vs, 2 + es)ds> .
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Hence by (5.10), the integral in the right-hand side converges to
(5.12)

L (v [ﬁ*(v) F(0,—2)G(v, 2) + nt ( /O s ) Crnt es)dsﬂ |

:u+ SxRt

By Fubini’s theorem, we have

/5 (e ( /0 s — ) Clrent es)ds>
_ /Sﬂdv)nj (/Om /ch(l/s,—z - eS)G(VS,z—i—ES)dsdz)
:/87r+(dv)nj (/OC ds/;oo f(vs,—y)G(Vs,y)dy)

¢
(5.13) :/s . 7t (dv)dyn; (/o Lie, < f (s, —y)G(us,y)ds) :

Next we deal with the creeping event {{_+ = z}. Note that
+o00
Fy(dv,dz) = / ge "Poy (O] € dv, &' e dz) dt
0
+oo
= q/ Pop (6] € dv, & € dz,t < ¢,) dt.
0

This equation implies that Fy(dv,dz)/q can be viewed as the potential measure of the non-
decreasing MAP (£7,07) killed by an independent exponential time e,. In fact, we can
verify that this killed process is still a nondecreasing MAP and satisfies all the conditions in
Lemma 2.1. Hence by Lemma 2.1 Fy(dv,dz) has a density function fy(dv, z) with respect to
the Lebesgue measure dz such that

(5.14) Pog (hOF): &5 = 0. T <ey) = é /S a* (0)h(v) fo(dv, z)

for every nonnegative measurable function A : S — R and almost every x > 0. We claim that
z— Pog (h(@;;); ;; =ux,T5 < eq> =Pyy (e*qT;h(@;;); ;; = :13) is right continuous on
[0, 400) if in particular A is a bounded continuous function. To see this, we take an arbitrary

sequence I,,r € R and z, | z. Since ;+ = {_+ we have
T x

‘Po,e (e_qT%h(@;;n); ;Z”n = xn) - Po,e (e_qT;h(@JTrj); ;; = x)‘
—qTy, + -
+[Pog [emn(e7, ) — T H(OL, )i, = 1|

< IPllcPoo ({6, = 2} Az = a}) +Pog [l ™ h(OF, ) — e h(6},)
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In view of (2.22) and the fact that T} | T and @; — 9+ Py p-a.s., we get by the above
inequality and the bounded convergence theorem that

_ a7t _ 7t
im Pog (7 R(OF, )&k =) =Pog (¢ R(OL )& = 7).
Hence we prove the claim. Now we set fy(dv,z) = “yPos <@;; € dv,ﬁ%r =z, TF < eq>

for every # > 0. The above arguments shows that = — a*(v)fa(dv, z) is right continuous
on (0,400) in the sense of vague convergence and (5.14) holds for every z > 0 and every
nonnegative measurable function h : § — R. Since

1R .
U, (dv,dz) = 5ZF9(n+1)(dv,dz)
n=0

1 Z“” \
= —/ F¢(d1}, dz — y) Fen(dqb) dy)a
q Jsx[o0,z] n=0

we can take the density function uf (dv, z) of Uy (dv,dz) to be such that

1

(5.15) uy (dv, z) = —/ s(dv, z — ZF (d¢,dy) Vz>0.
q Jsx[0,z]

For n > 1,

“+o00
Fr(de,dz) = /0 Poy (@;@ € dv,&f, € dz) dt

+oo qntnfl
/ n 1)'e_th9(@;r € dv, &' € dz)dt,
0 - .

Obviously F;™(dv,dz) is absolutely continuous with respect to U, (dv, dz), and hence F;"(dv, dz)
has a density function with respect to the Lebesgue measure dz which is denoted by f;"(dv, z).
In view of this, uy (dv, z) given in (5.15) can be represented by

ug (dv, 2) = —fg(dv z) + / dy/ fo(dv, z — Z "(de, y)

Using this expression and the fact that z — a™(v) fs(dv, 2) is right continuous on (0, +00),
we can show that 2 — a™(v)u (dv, z) is right continuous on (0, +00) in the sense of vague
convergence. Hence u, (dv, z) given in (5.15) is the density function taken in Proposition 2.9,
and we have

P [f((%j_,ff;_ —2)9(O & — ) Lie =0
= / at(v) f(v,0)g(v,0)uy (dv, z)
S

=L YEr ey [ 00 @) e )

q n=0
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for every z > 0. Again by Remark 5.2 we can show that (¢, z) = [ f(v,0)g(v,0)a™ (v) fe(dv, 2) =
qPo.s f(@JTQ, 0)g (@JTZF, 0);TF < eq] € M. Hence by (5.9) the integral in the right-hand side

converges, as © — +00, towards

R /S ot () £(0,0)g(v, 0) fo(dv, )

VJ+ SxR+t
[ 7o) | @009t 0)Filae.dy)

_ L / (A6)Pog [ (M) F(MO 0)g(M{"0)

(5.16) at(v)f(v,0)g(v,0)7"(dv).

M+

In the final equality we use the fact that 7% is an invariant distribution for (ngq)’Jr)nZO.
Combining (5.12), (5.13) and (5.16) we get

PO’G [f(@nj‘_;fq_;'_ o x>g(@q—;7£q—; - QZ)}
1 + + “NG(v. 2 aHdv)at (0) flv v
%—{/‘SXWW (dv)dzl™(v) f(v, —2)G(v, )_|_/ (dv)a* (v) f(v,0)g(v,0)

nr S
¢
+/ 7 (dv)dyn; (/ Lie,<yy f (Vs —y)G(VS,y)ds)] as v — 400,
SxR+ 0

which yields the first assertion of this proposition. The second and third assertion follow
immediately from the above equation by setting f = 1 and g = 1 respectively. [

In the remaining of this section we consider the nondecreasing MAP (L~1,0%). The ordinate
L~ can be represented by

t
(5.17) L' = / (MO ds + > ALY VE>0
0 s<t
where AL;' = L;! — L' Note that for any ¢ > 0, assuming (5.1) and (5.2),

t
Por+ [L;'] = Poq+ [ / rH(©hds+ ) AL

0 s<t

— Py { /0 t (ﬁ(@j) + ngj(c)> ds]

= [Po (100 402, 0)] s

0

= t/s (€(0) + g (¢)) 7+ (dO) = ter.
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In the last equality we use the fact that 7" is an invariant distribution for (©; );>¢. If we
consider the Markov renewal process (MT(LQ)’Jr, Néq)’Jr)nZO, then we have

+oo
(518) PO,ﬂHr |:N1(q)7+i| = P0,7r+ |:_Z/€_1i| = / qe_thO T+ [.Zzt_l]dt = —Cx+.
! 0 7 q

For every 6 € S, define

Loo
W, (dv,dr) := Py [/“ Liotcdn, Ls%xh}dsl
0

and Gy(dv,dr) :==Pgy <M € dv, N te dr) . Let G3°(dv, dr) := dy(dv)do(dr) and for

n > 1, let G be the nth convolution of Gy. In view of (5.18) under the assumptions of
Proposition 5.3, it follows by [2, Theorem 2.1] that

(5.19) lim v, t—r) ZG (dv, dr) € / g(v,r)r* (dv)dr
Cr SxR+t

t——+00 SX[O t]

for every # € S and every measurable function ¢ € M. By applying similar calcula-
tions to W, (dv,dr) as we did to U, (dv,dz), we can show that ¢W," (dv,dr) is equal to
o G5 (dv, dr). Hence by (5.19) we have

(5.20) lim g(v, t —r)W, (dv,dr) = ! /s N g(v, )7t (dv)dr.

t—+o00 Sx [O,t} cﬂ-“ﬁ

LEMMA 5.2.
(i) The nondecreasing MAP (L', ©%) has a Lévy system (H*,NT) where Hf =t A (*
and N*T(0,dv,dr) :=T"(0,dv,dr, [0,00)) is a kernel from S to S x RT.
(i1) For r > 0, define )

d, :=1inf{s >r: & =&}

Then for every 0 € S, W, (dv,dr) has a density function wy (dv,r) with respect to the
Lebesgue measure dr such that

Py, [£(O, /f )+ (o) (dv, 7)

for every nonnegative measurable function f : S — RT and almost every r > 0.
Moreover, for every 6 € S and every bounded continuous function h : & — R, the
function v+ Pog [h(©,);d, = 1] is lower semi-continuous on (0, +00).

PROOF. The claim in (i) follows by taking marginals in Proposition 2.5.

(11) Since ¢ — Ly is a nondecreasing and right continuous process, we have L, = inf{s > 0 :
L7t > r} for every r > 0. We also note that L~=*(L,) = inf{s > r: & = £} = d,. In view of
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this, (i) and (5.17), we can apply Proposition 2.8 to the process (L~!,©%) and deduce that
Lo+ (0)>01 Wy (dv,dr) has a density function wy (dv, ) with respect to the Lebesgue measure
dr such that

(5:21)  Pog[1(©,)id, = 7] =Poy [/(6] )i L7 () = 1] / f @)+ W)y (dv, r)

for almost every r > 0 and every nonnegative measurable function f : S — R*. Now take
an arbitrary bounded continuous function A : § — R. We have

Poy [A(O,);d, = r] =Py [h(©,)] = Pog [1(O,);d, > 7] .

It is easy to see that r — Pg g [h(0,)] is right continuous on [0, +00) since © is a right contin-
uous process. We only need to show that r — Py [h(@T); d, > 7“} is upper semi-continuous
n (0,+00). Take an arbitrary sequence 7, | r € (0,4+00). Note that, for any s > 0, ds > s
if and only if s € U, ¢glgi, d;). Hence {d,, > r,i0.} = {r, € ngeG[gZ, ;) o} C {r e
Ugiealgirdi)} = {d. > r}. It follows that limsup, o 14, >y = g oriog S Lgsn-
Thus by the reverse Fatou’s lemma, Po g [2(©,);d, > r] > limsup,_,, . Pog [1(O,,); d,, > 7]
We complete the proof. O

LEMMA 5.3.  Suppose that ((§,0),P) and ((&, @),f’) are a pair of upwards reqular MAPs
for which condition (WR) is satisfied. Under the assumptions of Proposition 5.3, we have

(i) [ €F(0)7t(df) =0, and [ ¢+(8,)dL, = 0, Py r-a.5.
(i1) For every y <0,

N 1 ¢
522 A ran) = = [waomd ([ e nemdr),
where Hy (y) = Py4 (1" = +0), and

5 (€= +00) pv 49 gy = L+ ().

(5.23) —f+(9) o Q) o

PRrROOF. (i) By (5.3), we have

(5.24) /S () r (d6) = Pom;[mp“’” [ /0 1£+(@5)di4 |

We note that by (2.3) and Fubini’s theorem,

400 +oo +oo
Py { / m@S)dEs} — P, { / Jl{seM}ds] _ / Po., (s € i) ds.
0 0 0

By Proposition 3.3, we have for any s > 0,

~

P0,7r (S S M) - PO,7r (58 §s - 0) P07r (gs = 0) S PO,T(' (7—6’— Z 3) =
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The last equality is because ((¢, @),13) is upwards regular. It follows that

(5.25) Py, Uom £+(@5)dLS] =0,

and hence by (5.24) [, ¢t (0)nx*(dd) = 0.
(ii) First we claim that
(5.26) Py (d,=7)=0 Vr>0.

In fact, by Lemma 5.2(ii) and (5.25), we have

+00 +oo
Por(d-=7r)dr = / dr/ 0 (v)w) (dv, r)

0 0 S
+oo
_ / / ()W (dv, dr)
0 S
400 _
(5.27) = Py, {/ £+(@S)dLS} =0.
0
Thus P, (JT = r) = 0 for almost every r > 0, and hence for every r > 0 since r —
| (dr = r) is lower semi-continuous on (0, +00). By Proposition 3.3 we have
(5.28) Py [9(00);& < —y] =Por [9(81); & — & < —y]

for every y < 0, t > 0 and every bounded measurable function g : S — R. It follows by the
bouned convergence theorem that

Pox[9(00);& < —y] = Poax[9(00);7h, > 1] = /S 7(d0)g(6)Po (71, > t)

(5.29) = [ #(@0)g(O)Pus (5, = +o) = [ w@0)g()F ),
as t — +oo. On the other hand, we have by (5.26)

(5~30) PO,# [9(@75)5 gt —§ < —y] = PD,Tr [9(@15)3 gt —& < —y, c]t > t} Vvt > 0.

We note that d; > t if and only if ¢t € Uy,ecl9i, d;). Hence by (2.4) the above expectation
equals

Pox [9(0:):& — & < —y,t € Uyealoi, di)]

t
16, (9(Ve—s) ey <yi-s<ct) dLs]

—+o00

= PO771'

1

J
J

=Por [ ; l{ialﬁ}ng; (g(yt—iu1)1{3_L_1<—y,t—iu1<<}> d“]

(5.31) - / W (dv, dr)nd (9(vs) Lo, <ptrecy) -
Sx[0,t]
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By (5.20), the integral in the right converges as t — +o0 to

1 1 ¢
— 7T+(dv)dr n;r (9<VT)1{erS—y7T<C}) = / 7T+(dv)nv+ (/ g(”?")ﬂ{wﬁ—y}dr) .
Crt JSxR+ Crt Js 0

Combining this and (5.28)-(5.31) we get that

R 1 ¢
[ g @) = = [ @ ([ atwtener)
S Crnt Js 0
for any bounded measurable function g : & — R, which in turn yields (5.22).
Next we prove (5.23). It follows by Proposition 3.3 that

(5-32) lso,w [g(@t)} = Po,ﬂ [g<®t>] vt >0
for any bounded measurable function g : S — R. Similarly by (5.26) and (2.4) we have

P0,7r [g(@t)] = POJI' [g((:)t)7t € Ugieé[ghdi)}

= Pox Zg(@gi)ﬂ{9i§t<di}

g:€G

— / W (dv,dr)g(v)n (t —r < Q).
Sx[0,4]

By (5.20), we get
lim Po [9(6)] = —— [ g ()" (a0).

t—+o00 Cr+

It follows by this, (5.32), the bounded convergence theorem and Lemma 5.3(i) that
150,77 [g<éeq>] = P0,7r [g(éeq)}

~+o0 _
= [ P [6.0)] as

(5.33) S g Ontas) = - /3 9(0) (€+(6) + () 7+(d9)

Crt Js Cr+

as ¢ — 0+. Let C denote the set of nonnegative bounded measurable functions h : S — R*
such that 6 — h(6)a*(0)/ (¢7(8) + ng (¢)) is a bounded function. On the one hand, by (5.33)

we have

(5.34) Po.,

MOc,)a" (Oc,) 1 at(0)rt as
(+(0c,) + 1§, (C)] - h(@)a™ (0)m" (df) q— 0+

Crt JS

for any h € C. On the other hand, by Proposition 2.3 we have
(5.35)

h(®,,)a* (O,,)

e - —or h(v)at(v)
q _ qr
(6. = W (dv,dr)e

SxR+ £+ (v) + 05 (C)
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If we can show that

(5.36)
h((:)eq)a+(éeq) VH(de, Rt h(v)a™ (v) At (¢ = 400
1P |76, +0g, © i B e e = e, e

then by (5.34) and the fact that W (dv, R*) = Ut (dv, R*) = Py » [ JE=1 {éjedv}ds] we get

(5.37) LUN@,RU%

Note that for any ¢ € (0, 1] the integrand in the right of (5.35) is bounded from above by

m (P @) +if (1 =e9).

Hence to prove (5.36) it suffices to prove

(5.38) /S W (dv, Rﬂm

By Proposition 3.3 and Proposition 2.3 the above integral is equal to

eder _a+(®€1) _ P _a+((:)€1)
(+(6.,) +15_(Q) (+(6.,) +15_(Q)

= / e "at(v)V" (dr, dv, dz)
Rt XSxRT
+0o0 -
= Py, {/ e ks a*(@j)ds]
0
L.,
/ at(©F)ds
0

The finiteness of the final expectation is implied by the finiteness of Py .+ [ff } Indeed, by
(5.3) and Markov property

i) (¢ = +00) = % / h(B)at(8)7T(dh) Vh e C.
172/l
<f+(v) + 10, (1 — e_c)> < 400.

e(el _gel)

P077r

= P0,7r

r rl
P0,7r+ [gfr] = —POJI' /0' PO,@S [ffr} dLs:|

L
_ +
N Py~ [E1] Pox 0 Poe: [él } ds]

1 L N
i ) (€]

Since the continuous part of £, — & is [} gt (©;F)dr, we get by Fubini’s theorem that

E1+1
/ at(©)dr
0

Ly
+OO>PQ7T+ [fl]Poﬂ- >P0ﬂ-[/ dS/ @Jr dr :Po,ﬂ-




By writing Py [foiscﬁ(@j)dr} Po. [J5 at(©,)dL,], one can easily show that s —
Py~ [ fois a+(®+)dr} is subadditive and locally bounded nonnegative function, which in turn

implies that Py , UL‘” a®( @*)ds] < 00.

We deduce therefrom that (5.36) and hence (5.37) hold for every h € C. Now, for a gen-
eral nonnegative measurable function h, one can always find an nondecreasing sequence of
functions h,, € C such that h, — h in the pointwise sense. Using this and the monotone
convergence theorem, one gets that (5.37) holds for any nonnegative function h. The identity
(5.23) follows immediately. O

PROPOSITION 5.4. Suppose that the assumptions of Lemma 5.3 hold. Then the stationary
distribution p®(dy,dv) given in Proposition 5.5 can be represented by

p®(dy, dv) = pi(dy, dv) + p5 (dy, dv)

where . ) R
Pt (dy, dv) = ;—J{M}Hv(—y)lfﬂy)dy 7(dv),
" (Wit (¢ = +o0)
Crt @ n; +00 o
p% (dy, dv) := M—: 0 0 So(dy) U (dv, RT).

Part 111
Main results and their proofs

6. Assumptions and main results. Recall that (X, {P.,z € H}) is an H-valued ssMp
and ((£,0),P) is the corresponding MAP via the Lamperti-Kiu transform, for which we
have assumed its Lévy system (H,II) satisfies H; = ¢ until killing. We assume the following
additional conditions hold.

(al) (X, {P,,z € H}) is a Feller process.

(a2) The modulator of ((£,©),P) is a positive recurrent process having an invariant distri-
bution 7 which is fully supported on S. The continuous part of £+ of ((£7,07),P) can
be represented by fg a™(07F)ds for some strictly positive measurable function a* on S.

(a3) ((£,0),P) and ((£,0),P) are a pair of upwards regular MAPs for which (WR) is
satisfied.

(ad) ((¢,0),P) satisfies condition (HT).

(a5) Por [sup,eqo, [&1]] < +oc.

(a6) The modulator of the ascending ladder height process ((£1,071),P) is a nonarithmetic
aperiodic Harris recurrent process having an invariant distribution 7+ on S with full
support such that Py .+ [ﬁf] < +00.
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(a7) 0} (¢ = +00) > 0 for every v € S.
(a8) infyes [(T(v) + 0 (1 —e™¢)] > 0 and nf(¢) < +oo for every v € S.

As noted in Section 5, given conditions (a2) and (a8), it follows by Corollary 2.15 that

1 ! _
) =—— Py | | 1io.crdL,
"0 = o myPe |, et

is an invariant distribution for ©*. Moreover, the Harris recurrence of ©F given in (a6)
implies that 7 is the unique invariant distribution for ©7.

THEOREM 6.1.  Under assumptions (al)-(a8), the conclusions (C1)-(C5) in the Introduc-
tion are true.

We conclude this section by considering a slight adjustment of the sufficient conditions (al)-
(a8), such that (a5) and (a7) can be replaced by the stronger sufficient conditions (i.e. ones
that imply (ab) and (a7)). Our principal aim here is to produce conditions that can be
identified in terms of the components of the ascending ladder process of ((§,©),P) and the
ascending ladder process of the dual process ((€, @),15). More precisely, we have the following
alternative conditions to Theorem 6.1.

THEOREM 6.2.  Suppose conditions (a5) and (a7) are replaced by:
(a5)” The modulator (8} )i=o of the ascending ladder height process ((€7,07),P), is an

aperiodic Harris recurrent process having an invariant distribution 7+ on S with full
support such that [, 7+ (dv) [a™(v) + 0] (Jec|; ¢ < 00)] < +o0.
(a7)” inf,es it (( = +00) > 0.

Then the conclusion of Theorem 6.1 s still valid.

REMARK 6.3. Before continuing to the proof, let us note that the condition in (a5)’ is the
natural analogue of (a6). Indeed, note that P+ [£] = [¢ 7 (dv) [at(v) + nf ([ec|; ¢ < o0))].

PROOF OF THEOREM 6.2. Condition (a7)’ obviously implies (a7). The proof is based around
showing that the new conditions together with (al)-(a4) and (a8) imply (a5). Suppose that
e, is an independent exponentially distributed random variable with rate ¢ > 0. On account
of the fact that t — Py, [supse[o,t] |&5]] is increasing, to show (a5) it suffices to show that

P0,7r

sup |§s|] 2/ qe™"Po [sup |§8|] dt < oo.
0

5€[0,eq] s€[0,¢]

For the latter, we note that

POJr

an el| <P 6] R[]

s€[0,eq4]
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Next define
(6.1) Af(g) =0t (v)g+ni(1—e%), ¢>0.

Note from Proposition 2.3 that
— o0 |
(6.2) P [e,] =Por {/0 Lt ooy aLs fjAgj (q)ds| .

Next define the change of measure

)
dPg g

—qL7 - [FAT (q)d
— e qly +f0 93_(Q) s

(6.3)

Gt

for 6 € S, where G, = o((L;',&F,©F),s < t). To see why the right-hand side of (6.3) is a
martingale, it suffices to note that (L; ', ©; )0 is a MAP and that, for § € S,

F— — [fA* ds
P gle 4" 1|@j cs<t]=e Jo hoy @ : t>0,

which follows from the the definition (6.1) and the fact that the constituent parts of A7,
namely £*(v) and nj (1 —e7%) describe the rate at which L;! moves continuously and with
jumps given OF = v, for v € S.

Using (6.3) in (6.2), we have

_ 00 s+ u 00 s a+t ”
Py [&,] =P [ / o Ad @ ng@:(q)ds} =P [ / o Jo Aoy @du 5:1,
0

0

where the final equality follows by a straightforward integration by parts (recall that the
process £ is non-decreasing and therefore has bounded variation paths). From (a8), we now
have that there exists a constant ¢ > 0 such that for any ¢ > 1

6.4 1:)07r ge SP(Q) efcsd£+ ICP(q) efcsg+d8 =c efcsP(Q) £+ dS,
) q 0,m 0 s 0,m 0 s 0 0,m S

where, again, we have performed an integration by parts. Next note that, given O, the
exponent associated to (L; ', &) >0, is given by

_ t
Pt 55 0% = exp - [[as [007(©1) 4 Br(O) g (1 - o )i < )],
O S
for ¥, B8,t > 0. From this it is easily deduced by differentiation that

PO/ 107 = [ ds[a(O1) + nf (Jecle 5 < )]

t
< [Far @) +ugecl¢ < o)ds
0 S
—Pl¢/lo"].
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Using the ergodic properties of © under P, we can invoke Theorem 1.1. of [19] and conclude
that

1 1
lim sup ;P((fq)T (61 < tlim —Po - [&]
t—o0 —oo 1

1 !
= lim ZPO’W {/o at(0f) +ngj(|eg|;C < 00)ds

_ / mt(dv) [a* (v) + 1 (Jec]: ¢ < 00)]
= P0,7T+ [gf]

Using the above linear growth, it follows from (6.4) that Py . [Eeq} < 00.

Using obvious notation, the analogous object to A (¢) for the descending ladder height MAP
takes the form

Ay (q) =n, (C=400)+ L (v)g+n, (1—e % (<0o0), ¢>0

(Specifically, we cannot rule out the possibility of killing.) Let us momentarily assume that
the modulator of the descending ladder height process ((§7,07),P) is an aperiodic Har-
ris recurrent process with an invariant distribution 7= on S with full support such that
Jsm(dv) [a™(v) 4+ ny (Jec]; ¢ < 00)] < 400 and infyesny (¢ = +00) > 0. Following the above
computations, albeit using the last lower bound to justify the lower bounding constant ¢ in
(6.4), we can show that Py . [geq] < 0.

To complete the proof, we need to show that the assumptions in the last paragraph match
those in the statement of the theorem by verifying that P - [{1_ } =Py i+ [ff“ } Thanks to

the weak reversal relation between P and P (see the discussion below Lemma 3.2), we have
that Py .- [¢7] = Po#-[£ ], where @~ plays the role of 7~ but for ((£,©),P). The relation
between P and P then implies that 7= = 7+ and Py 7~ [£;] = P .+ [£]] as required. O

The remainder of the paper is devoted to the proof of Theorem 6.1. Hereafter we always
assume conditions (al)-(a8) hold unless otherwise stated.

7. Construction of entrance law. We define the killed process (£T, ©F) by setting

(52', @'tf) — {(ft» @t) if ¢ < 7—(;’_

9, ift > 7.

The next lemma is the analogue of Hunt’s switching identity (see [6, Theorem II.5] for the
case of Lévy processes). It follows from the proof of |21, Theorem(11.3)], we include it here
for completeness.

LEMMA 7.1.  ((£7,01),P) and ((¢F,01),P) are dual with respect to Leb @ .
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PRrROOF. Let pu:= Leb®m and fix an arbitrary ¢ > 0. Then from Proposition 3.2 and Lemma
3.1 we see that the process (({y—s)— ,@( t—s)—)s<t, P,) has the same law as ((&s, 5)s<t,P ). It

follows that the triple process ((§—s)—, © (t—s)— ,&t)s<t, P,,) has the same law as (&, O, §t)s<t, )
Thus for any nonnegative measurable functions f,g: R x § — R*,

/R  Pldy d8)g(y, 6P, F(&!, O] = / Py, d8)Po[g (&0, ©0)F (&, ) Lo
_ /R 1y 0Py olg (60, ©0-) (60, O0) g <o)
_ /R iy, 0Py glg(, O (€ ©0)1 <o
_ / iy, d0) (5. O)Pyolg() O1)]

where in the third equality we have used the quasi-left continuity of ((£,©),P). O

Recall the definition of ¢ from (1.2). Let us define the time-changed process (£¥,0%) by
setting

(&7,0F) == ((o), Opry) VO <t <,

where ¢ := fooo exp{a&,} du is the lifetime of (£2,©¥). We denote by (£97, 0%T) the process
of (£€#,0¥%) killed after the time 7" := inf{t > 0: &7 > 0}.

LEMMA 7.2. The processes ((£97,097),P) and ((£%, @“"),f’i) are dual with respect to the

measure c.

vo(dy,df) == Lyycop—— M* e H (y)dym(d6).

PROOF. Let f,g: R xS — R" be two nonnegative measurable functions. By the definition

of lf’i given in Section 4 we have

/(_ s Y0 Hi ()9 (y, 0P, o[£ (&, 0]

- /( ) deﬁ(d@)lffe+ (v)g(y. O)P,

f(fty@t)i[{ it));t < T(;r]

— [ dyn(@0)gln.00P, [1(6 005, (€5t < 7]
(—00,0)xS

(7.1) = / dyw(d&)ﬁj(y)f(y,@)f’yﬂ [g(ft, ©y);t < Tﬂ .
(—00,0)xS

In the final equality we have applied Lemma 7.1. The above equations show that ((£7,©7),P)

and ((¢&, @),lsi) are dual with respect to the measure

+

Cr
p(dy, do) = ]1{y<o}lu—Jr
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Next for t > 0, define
t
A= / exp{ag, } du.
0
Then A; is an additive functional in the sense that
At+S:At+A;OQS t,SZO

where 6 is the shift operator and A’ is an independent copy of A. Since ¢ is the right
inverse of A, |31, Theorem 4.5| states that the time-changed processes ((£27,©%71) P) and

((&¥, @9"),f’¢) are dual with respect to the Revuz measure v associated with A;, which is
determined by the following formula:

o1
(7.2) [ by do) = Jim 5 | (e, do)P [ / f(el el dA}

for every nonnegative measurable functions f : R x & — R". By Fubini’s theorem and the
duality relation obtained in (7.1) we have

RHS of (7.2) = lim p(dz, dv)P U f(eten aﬁsds]

t—0+ ¢ RxS

¢
= lim ,u(dz,dv)eo‘zf(z,v)%/ P;v(s<C)ds
0

t—0-+ RxS

= / w(dz, dv)e® f(z,v).
RxS
In the final equality we use the dominated convergence theorem. Hence the processes ((£#1, ©91), P)
and ((£%, £*"),f’i) are dual with respect to e®u(dy, df) = 1{y<0}2—f e HF (y)dyr(dd). O

Now we wish to apply Lemma 3.2 to the dual processes ((£27,©91) P) and ((£%, @‘P)Jsi).
In order to do so, we need to check the integral condition given in Lemma 3.2. We will show
the integral condition in Lemma 3.2 by breaking it up into two lemmas as follows.

LEMMA 7.3.  For every nonnegative measurable function f: R x S — RT,

Al
/ p? (dya de)Py,H
RxS

¢
/ f(fé",@f)dt] — [ (. d0) (. 0)P(e s > 0)
0 RxS
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PRrROOF. Let f: R xS — R be an arbitrary nonnegative measurable function. We have

5
N

| svnaopy, | [ reena

RxS 0

Crt oy 1 —QyYT] 5t
= dye® Hy (y)m(df)e™*IIy(—y)P, 4
2 (—00,0)xS

¢
/0 f(e.0F) dt

¢
oy A
:/ Syo(dy,de)e yHg(—y)Pyﬁ /f(ff,@f)dt
Rx 0

_ / vo(dy, d0) £ (y, 0)Py g
RxS

7'80’+ o
/ e 8 Ty (—€F)dt |
0

where I1,(2) = (v, S, (2, +00)). The last equality follows from Lemma 7.2. We undo the
time-change and write

®,+

TO _
/ e 08 Tl (—£7) di
0

+

/0 " o, (&) dt] .

Py79 = Py,@

Hence we get
(7.3)

¢
o
/ pt(dy, dO)P, , [ / f(&7,07)dt
RxS 0

_ / vo(dy, d0) f(y, 0)Py g
RxS

/0 " e, (—&) dt] :

On the other hand, by the Lévy system representation given in (2.1), we have

P,y (@J > O) = Pyy Z Lie. >0y

+
s<7q

-
= P,y / ds/ Lie,425011(Os, dv, dz)
i 0 SxR

= Py /O “ ne.. s. <—5s,+oo>>ds]

(74) = Pyﬂ /OTO H@S(—fs)dS] .

The lemma now follows by plugging (7.4) into the right-hand side of (7.3). O

LEMMA 7.4. For every nonnegative measurable function f : R x S — R,

= f(?“, G)Vo(dra de)Prﬂ(gq—o*' = O)

RxS

R ¢
(7.5) / B anp,, [ / f(eg, 07 dt
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PrOOF. Without loss of generality we assume that f is a nonnegative compactly supported
function for which the integral in the right-hand side of (7.5) is finite. First we undo the time

change and write
1 <
= Pr,9 |:/ eaftf(gh @t)dt:| :
0

Let F(z,0) := e® H (x)f(z,0) for (x,0) € R x S. By (4.2) and Fubini’s theorem we have

. ¢ . <. n, f —€s, Vs)ds
Péya [/0 ea&f(gt,@t)dt] = Péﬂ [/0 Hért(gt)lF(ft,@t)dt} [ 0 _

iy (C = +00)

¢
/ J(€7, 07 )dt
0

r,0

Hence by the definition of p§ we get

) ¢
| ostaranpy, | [ peenar
Rx

_ &t + ( )iy (€ = +00) 51 Ceo‘&
- 0+ (d6, R ) 6+ (C) Poy {/0 f(&, @t)dt]
+ A+
_ Gt |t . 0)ng [ Es’ys)ds}
(7.6) =7 /S U7 (d0,R™) 0+(8) + ng ()

On the other hand by Proposition 2.8 and Fubini’s theorem we have

[ vl a0)1.0Py0 (&5 = 0)

Cr oy T
=S | dym(d)e i (1) (9,0 (€5 = —y)
% R— xS Y
=z dzm(d)e 2 H (—2) f(—=2,0) / ot (v)ug (dv, 2)
BT IR+ xS S
Cr+

= S7r(d9) /S><R+ U, (dv,dz)F(—z,0)a™ (v).

From this and (7.6) we can see that to show (7.5), it suffices to show
(7.7)
A at(0)iy, [fog F(—¢s, Vs)ds}
Ur(dg,R* :/Wdﬁ / U (dv,d2)F(—z,0)a™t(v).
[ m [w(a0) [ (v P=z0)at0)

By Proposition 3.3 the following equation holds for all ¢ > 0:

(78) P, |:que‘z F(_geq’ 60)a+((:)eq) :| - 150 |:eq(queq) F(_(geq — geq)v @eq)a+((:)
| q (f—’—(éeq) + ngeq (<>> | q <€+(éeq) + nggq (C))

eq)

ol



By Proposition 2.3, the expectation in the left equals

/871'((119) /SXR+ U;(dv’dZ)F(_Z’9>a+(v)H(v);(:)jff;:d%

(7.9) o /S (d0) /8 Uf (@, d2) P, 0)a* o)

as ¢ — 0+ by the monotone convergence theorem and condition (a8) that n} (¢) < +oo for all
v € 8. Similarly by Proposition 2.3 and the monotone convergence theorem, the expectation
in the right-hand side of (7.8) equals

- at (v (foc F( es,us)ds>
Vo (dr,dv,dz)e™ "
[ DRSS
X at(v)iy foc F( es,ys)ds>
7.10 — [ Uf(dv,R*
(710 B B i
as ¢ — 0+. Hence (7.7) follows immediately by combining (7.8)-(7.10). O

Finally, we show that the process ((£%, @W),lsi) has a finite lifetime.

LEMMA 7.5. For everyx <0,60¢€ S,

] +oo
P,y (/ e®Stdt < —|—oo) = 1.
0

In particular, the lifetime ¢ of the process ((£¢, @“’),f’iﬁ) is finite almost surely and 5?7 =

A4
—oo P, g-a.s.

PROOF. Since the lifetime of the time-changed process (£¥,0%) equals f0+°° e?¢tdt, we only
need to prove the first assertion. We first consider the case where x < 0 and # € S. Re-

call that lsiﬁ is defined from Pxﬁ through a martingale change of measure with W, :=
ag (ét)]l{t<75r}/f;[j(x) being the martingale. Since H;f (y) = P, (1" = +o0) € [0,1], W, is

a bounded P, p-martingale and hence has an almost sure limit W, such that W, — W, in

L*(P,p). This implies that lsiﬁ(A) =P, g [Ws1ly] for all A € F. Hence we get

N +oo ok, .
(711) Px,@ (/0' e S dt < +OO> = Px,G |:W001L{f0+°° ea'ftdt<+oo}i| .

It follows by Lemma 3.3 that

=Py, <2Pg, | sup |&]| < +o0.

s€[0,1]

sup &5 — &
s€[0,1]

b o

s€[0,1]
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Hence the MAP ((£,0), P) exhibits exactly one of the tail behaviors described in Proposition
2.11. We have proved in Proposition 4.1(i) that P, (T@L = +oo) > 0. This together with
Proposition 2.10 implies that under 13;,;,9 the ordinate &, drifts to —oo at a linear rate. Hence

we have .
1590,9 (/ et dt < +oo) = 1.
0
By this and (7.11) we get

Pi,e (/ edt < +oo) =P, o[Ws] =1
0

. . .- 5F
Now we consider the case where x = 0. We have proved in Proposition 4.3 that under P,
& leaves 0 instantaneously and that the process (&, ©;);>o has the same transition rates as

((&;, @t)t>0,P;9) where (y,0) € (—00,0) x S. By the Markov property we have

ol oo N PN oo
Poy (/ et dt < +oo) =Py, {P%GS (/ esdt < +oo)}
s 0

for any s > 0. Hence we get 15379 ( 0+°° estdt < —l—oo) =1. O

By Lemma 7.2 the processes ((£#1,091) P) and ((£%, @w),lsi) are dual with respect to vy.
By Proposition 5.4, Lemma 7.3 and Lemma 7.4 one has

(7.12) / p®(dr, dO)P)
RxS

¢
/0 f(gfa @f)dt] = f(?“, 0>Vo(dr= d@)

RxS

for every nonnegative measurable function f : R x § — R*. We define the time-changed
reversed process (£, 0) by setting

(ét, ét> = <£E%_t)_, @Z%—t)—) for 0 <t< C_

In view of (7.12) and Lemma 7.5 we can apply Lemma 3.2 to deduce that ((&, C:)t)0<t<g, f’t@) is
a right continuous strong Markov process having the same transition rates as ((£27, 0%T), P).
In conclusion we have just shown the following proposition.

PROPOSITION 7.1. Let o be the image of the probability measure p® under the map ¢ :
(y,0) — 0c¥. Let P be the law of the process (X; = egtét)t@ under lst@. Then the process
((Xt)Kg, ]P’g\) is a right continuous Markov process such that Xo = 0 and X; # 0 for all t > 0

]P’g\‘—a.s. Moreover, ((Xt)0<t<§,[P’g\) s a strong Markov process having the same transition
rates as the self-similar Markov process (X,{P,,z € H}) killed when eziting the unit ball.

By applying the scaling property of ssMp, we can describe the law of the process killed
when exiting the ball of radius r, for any » > 0. Thus we see that there exists a process
(X,Py) started at the origin such that for any r > 0, ((X;),_.e,Py) is equal in law to

t<tp
((TXT*at)t<r0‘C7a ]P)g\‘) :
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8. Convergence of entrance law. In the following we give a convergence lemma, which
gives sufficient conditions for the candidate law Py defined in Section 7 to be the weak limit
of limys, 0 P,. The idea of its proof is from [16, Proposition 7|. For completeness we also
give details here.

LEMMA 8.1. Suppose {p, : n > 0} is a sequence of probability measures on H which
converges weakly to dy. Then Py = in the Skorokhod space if the following
two conditions are satisfied:

w-limy, 1o P,

n

(i) lims_yo limsup,,_, , .o P, [75 A 1] =0,
(ii) there exists a A > 0 such that for every § € (0,A), (XT§>Pun) — (XT?,PO) in distri-
bution as n — +00.

PROOF. Let Dy« be the space of (possibly killed) cadlag functions w : [0, 00) — R%, equipped
with the Skorokhod topology. We work with the Prokhorov’s metric d(-, -) which is compatible
with the Skorokhod convergence: for m € N and two paths x,y in Dga, define

Ao () := inf { sup |A() —¢[V sup |z(t) —yo A#)]},

A€Am “te(0,m) te[0,m]

where A, denotes the set of strictly increasing continuous functions A : [0, m] — Rt with
A(0) = 0, and define

22’” m(z,y) +dm(y, z)) AL

To prove Py = w-lim,,,;P,, in the Skorokhod space, it suffices to prove that for an
arbitrary Lipschitz continuous function f : Dra — R with Lipschitz constant x > 0,

(8.1) lim P, [f(X)] =Po [f(X)].

n—-+4o00

We note that by Proposition 7.1 ((XHT )t>0,IED0> is a Markov process having the same

transition rates as (X, {P,,z € H}). In view of the Feller property of (X,{P, : z € H}) and
condition (ii), [17, Theorem 4.2.5| yields that for every § € (0, A)

((XHT )0, P, >_> <(Xt+7' )t>0’P0>

in distribution under the Skorokhod topology as n — 4o00. Thus by the representation
theorem, there exist an appropriate probability space (€2*, F*,P*) and couplings Y™, Y(©
of the processes (X,P,,) and (X, Py), respectively, such that

V5 Yiso = (VD )izo asn— +oo

P*-almost surely in the Skorokhod space, where for k > 1, ¢, := inf{t > 0: |¥;®|| > 6} and
=inf{t > 0: HYt(O | > 0}. We observe that for n > 1,

AY ™, YO) <45+ 26, — o A1+ (Y2, V).
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Thus by the Lipschitz continuity of f,

(82) [P [F(Y™)] = P* [F(YO)]| < 458 + 26" [l — ol A 1]+ wP" [a(¥ L, VL)

Obviously the third term converges to 0 as n — +o0o by the dominated convergence theorem.
Note that
P*[ls, — ol A1) < P* [, A1)+ P* [ A 1]

Condition (i) implies that

lim limsup P* [¢, A 1] = lim limsup P,,, [75 A 1] =0,

=0 p—itoo =0 potoo

and the right continuity of (Y(®),P*) implies that lims_oP* [ A 1] = 0. Hence we get by
(8.2) that limsup,,_, , . |P* [f(Y )] — P* [f(Y(O))” < 4r0. Hence (8.1) follows immediately
by letting 6 — 0. m

LEMMA 8.2. For any 6 > 0 and any bounded continuous function f : H — R, z —
P, [ty A 1] and z — P, [f(XTé@)} are continuous on H.

PRrROOF. Fix an arbitrary 6 > 0. Suppose z,, 2o, € H satisfies that lim,,_, . 2, = 2. Since
(X, {P, : z € H}) is a Feller process, by [17, Theorem 4.2.5] (X, P, ) — (X,P,_) in the
Skorkhod space. For n > 0, let (Y™ P*) and (Y,P*) be couplings of (X, ) and (X,P,_)
respectively, such that Y™ — Y P*-a.s. in the Skorokhod topology. Let S := inf{t > 0 :
|Yi|| > 0} and ¢, :=inf{t > 0: ||Yt(")|| > 0} for n > 0. Since X is a sphere-exterior regular
process, so is Y, which implies that ||Y;|| # ¢ for any ¢ < S P*-a.s. In view of this, it follows
by [32, Theorem 13.6.4] that

Sh YY) 5 (S.Y- P*-a.s.
( ’ G » LS

as n — +oo. Consequently ((T(?,XT(;@),PZTJ converges in distribution to ((769, XT?),P ),

Zoo

and hence this lemma follows. O

LEMMA 8.3. For any sequence {z, :n > 0} C H with lim,_,, 2z, = 0, we have

(8.3) limlimsup P,, [r5 A 1] = 0.

00 nostoo

PROOF. By the compactness of S, it suffices to prove (8.3) for a sequence {z, : n > 0} with
limy, 4 o0 ||2n]] = 0 and lim,,_, ;o arg(z,) = 0 for some 0 € S. We first consider the case where
arg(z,) = 0 for n sufficiently large. By Lamperti-Kiu transform one has

+
Tlog&
(T(?,]P’z) 4 </ eaéudu,Plog”x@rg(z)) Vo >0,z € H.
0
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Taking expectations of both sides and using the translation invariance of ¢ and Fubini’s
theorem, we have for every z € ‘H with ||z|| < 0,

+
Tlogé
Po[75] = Plog|je|arg(a) [ /0 eag“dU]

+

k)
= 0"Piog(jje]/9) ang(x) [ /0

= 0° /O duProg(a11/5) are(@) [e_“(&‘_g“)eag“ﬂ{éugo}}

eOu du]

13 1 —Q 7e —Ge, aie
(8:4) = 0" lim Prog(el/5)arg(w) [e (GoaSoa)rt qﬂ{s‘eqso}] :

Set y = log(||z]|/d) < 0 and u = arg(x). By Proposition 2.3 and the monotone convergence
theorem we have

1 —« 7e —Se Oéie
5Py,u [e (foq=8eq) 06 qﬂ{g’eqsm}

1 —a(€ey—Ee ofEeq—
- 51:0,“ [e (Seq—teq) (&g |y|)1{§eq§|y|}}
¢
- / e~ Ire==lvD {f*(@) +n; (/ eqsasds>] V. (dr, dv,dz)
R+ xSx%[0,|y|] 0
¢
(8.5) — e~olvl=2) {f”(v) +n (/ e_o‘sds)] Ut (dv,dz)
Sx[0,yl] 0

as ¢ | 0. It follows from (8.4) and (8.5) that

¢
(8.6) P., [75] = (5“/ e~ ollynl=2) [W(v) +n (/ e”‘sds)] U, (dv, dz)
SX[Ov‘yn” 0

where y,, = log(||2,]|/d). Since |y,| — +o00 as n — +o0, by (5.10) the integral in the right-

hand side converges to
1 ¢
—/ {W(U) +n (/ e_asds)} 7 (dv),
@Js 0

which is bounded from above by c,+/a. Hence (8.3) follows by letting 6 — 0 in (8.6). For
a more general sequence {z, : n > 0} which satisfies the conditions stated in the beginning of
this proof, we set z7; := ||2,|6. The above argument shows that lims_, limsup,,_, , .o P.x [75 A 1] =
0. Since lim,, 400 [|2); — 2,]| = 0 and by Lemma 8.2 the function z — P, [75 A 1] is uniformly
continuous on any compact subset of H, we have lim,,_, | o ‘IP’Z; [75 A 1{ —P,, [75 A 1] { =0
and hence (8.3) follows. O

LEMMA 8.4. Suppose {z, : n > 0} C H satisfies lim,,_, 1 2z, = 0. Then for any § > 0, the

probability measures P, X%e € - ) converges weakly to a proper distribution ps(-) on H.
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PRrROOF. We need to show that there exists a distribution ps on H such that

(8.7) Jdim 2[00 = [

for every bounded continuous function f : H — R. In view of Lemma 8.2 and the argument in
the end of the above proof, we only need to prove that (8.7) holds for a sequence {z, : n > 0}
where lim,, 1« ||2,|| = 0 and arg(z,) = 6 for n sufficiently large. By Lamperti-Kiu transform
we have

P, [f(XTée)} = Plog||an,9|: (eXP{5+ 10 =t 5”

f ( log5e:><;p{£ + — log Tz H}@ )] )
18 T “n tog 27

Since ||z,|| — 0 and logd/||z,|| — 400, Proposition 5.3 yields that the distribution of
(€ + —logd/||znl], © ) converges weakly to p©. Thus the integral in the right-hand

Tog 6/l |zn T AR

side of the above equation converges to [i, s f (€"°8%*v) p®(dz, dv). Hence (8.7) follows by
setting f15(-) = [pi g Liewzsezpeqp®(dz, dv). O

= P0,0

LEMMA 8.5. For any 6 > 0, we have Py (Xr? € ) = ps().

PROOF. Suppose f: H — R is an arbitrary bounded continuous function and o, := 1/n for
n > 1. By Markov property, we have for any 0 < o, < 6,

(8.8) Po [f(XTa@)} =Py [IPXTJ@” [f(XT(?)H =Py [Q(XTO@”)}

where g(z) = P, [ f (XTL?)] Since under Py the process X; leaves 0 instantaneously and
continuously, we have X o — 0 Pg-a.s. as n — +o00. Hence by Lemma 8.4, g(X o) =

Px . [f<XT(?)] — us(f) Po-a.s. By letting n — 400 in (8.8) we get that Py [f(XT(?)] =
ts( fT)L, which yields this lemma. O

Proof of Theorem 6.1: The statements of (C1), (C2) and (C3) are from Propositions
4.2-4.3, Proposition 5.3 and Proposition 7.1, respectively. Hence we only need to show (C4)
and (C5).

(C4) We get Py = w-limy5, 0P, by a combination of Lemmas 8.1-8.5. Properties (4) and
(5) are direct consequences of the construction of (X, Py) given in Section 7. Next we show
that (X,{P.,z € Ho}) is a Feller process. We use C(Ho) to denote the space of continuous
functions on H, vanishing at infinity. Fix an arbitrary f € Cu(Ho), and let P, f(z) :=
P, [f(X;)] for z € Ho and t > 0. To show the Feller property, it suffices to show that
P,f € Cx(Ho) for all t > 0 and limy .o, P, f(2) = f(2) for all 2 € Hy (see, for example,
[13, Chapter 2 section 2.2]). The latter holds naturally since (X, {P,,z € Ho}) is a right
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continuous process. We only need to show P, f € Cy(H,) for t > 0. Suppose z,, x € Hy and
T, — x. It is known that w-lim, .. P, = P, in the Skorokhod space. If

(8.9) P, (Xi- # X)) =0

for t > 0, then it follows by [22, Proposition VI.2.1] that (X, P, ) converges in distribution
to (X, P,) and hence lim, 1o Py f(2,) = imy, 100 Py, [f(Xe)] = P [f(Xy)] = Pif(x). Since
(X,{P,,z € H}) is a Feller process and hence is quasi-left continuous, (8.9) holds naturally
for every x € H and every t > 0. For x = 0, we have by the Markov property that

Py (X # X;) = P (PXW <X%_ 4 X)) —0 V>0

Thus we have proved (8.9) holds for all z € Hy and ¢ > 0. Hence z — P, f(z) is continuous
on Hy. Next we show P, f vanishes at infinity. We use B(0,6) to denote the §-neighborhood
of 0. Since (X, {P,, z € H}) is Feller, we have

i, T = o 1, e lo()) =0
for all g € Cy(Ho) with g(0) = 0. This together with the scaling property implies that
the distribution of (X;,P,) converges weakly to the Dirac measure at infinity as x — oo. It
follows that

(8.10) lim P, (X, € B(0,6)=0 Vi>0.

Hod3x—00

Note that for every x € H and § > 0,

|Pof(z)] P, [f(X1); Xi € B(0,0)]| + [P, [f(Xy); Xe & B(0,6)]]

<
< [[flleoP2 (X € B(0,0)) +  sup  [f(y)]-
yEH\B(0,5)

In view of (8.10) and the fact that f vanishes at infinity, by letting x — oo and then § — oo
in the above inequality, we get that limys, 00 | P f(2)] = 0. Hence P, f € Cs(Ho). Therefore
(X, {P.,z € Hy}) is Feller.

Recall that ((X;);>0,Pp) has the same transition rates as the ssMp (X, {P,,z € H}). Thus
by Markov property, to show (X, Py) is a self-similar, we only need to show that (X, Py) 2

(¢Xe-ar,Pg) for every ¢t > 0 and ¢ > 0 , and this is true since

(X;, o) = w-_lim (X, P..) L w- lim (cXeop,P,) = (cXo-ap, Pp).

35z—0 H3z—0

Finally we show the uniqueness of Py. Suppose there exists another probability measure [P
for which the property (3) is satisfied. Using Feller property twice we get

Py(X;€)=w- lim P,(X;€:)=Py(X; €") for every ¢t > 0.

H32—0
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Hence by Markov property Pj is equal to Py. Suppose now that, instead, Pf satisfies the
property (5). Then for any ¢ > 0 and any bounded continuous function h: S — R,

Py [h(Xy)] = lim Pg[A(Xipo)]

e—0+

= el—i}(%— P; [Py, [A(X})]]

= Po[n(Xy)].

We used in the first equality the fact that (X,[P§) is a right continuous process and in the
second equality the Markov property. The fact that lim._,o; X, = 0 P§-a.s. and the Feller
property of (X, {P,, z € Ho}) imply that Px,_ (X; € -) converges weakly to Py (X; € -) P§-a.s.
This is used in third equality. The above equation implies that P(X; € -) = Py(X; € -) for
all t > 0, and therefore IP; is equal to Py again by the Markov property.

(C5) By the strong Markov property and the sphere-exterior regularity of (X, {P,,z € H}),
we have

Py (|| X¢|| = 6 for some t € (0,75)) = Py (HXt“ = ¢ for some ¢ € [r5),, 75°), 75 ), < 7'?)

= P {IP’XT(S@/2 (|| X¢]| = 6 for some ¢ < 7)) ;T(Sz < 7'5@}
= 0.
In view of this and the fact that w-limys._.oP., = Py in the Skorokhod space, it follows
by the Skorokhod representation theorem and [32, Theorem 13.6.4] that <(X7697,XT59),]P’Z>
converges in distribution to ((XTée_,XTée),]P’O> as z — 0. We note that for any x > 0 and
ves
Py e (arg(XTle,) € dv, log | X,o_|l € dy, arg(X,) € do, log||X,=|| € dz)
—P_., (@T;_ edv, & edy, O+ €dd, £+ € dz)
=Py (0, _€dv, {4 —zedy, ©4€do, {4 —aedz).

By Proposition 5.3 the last distribution converges weakly to p(dv,dy,d¢,dz) as  — +oo.
Hence by the above argument we get

w- lim P, (arg(XTle_) € dv, log || X o_|| € dy, arg(X,o) € do, log | X, € dz)

Ho2z—0
=P, (arg(XTle_) € dv, log || X o_|| € dy, arg(X,o) € do, log| X, € dz)
— p(dv, dy, dg, d2).

This concludes the proof. O
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